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irrational numbers of the type ++/2 or ++/a where a is not a perfect square Were
introduced. This process of enlargement of the number system ultimately led to the
set of real numbers 72, = Q U Q' (Q’ is the set of irrational numbers) which is used
most frequently in everyday life.

1.2 Rational Numbers and Irrational Numbers

: P
We know that a rational number is a number which can be put in the form —c;

where p, g€ Z A g#0. The numbers J16 ,3.7,4 etc., are rational numbers. \ﬁg can

; 4
be reduced to the form 2 where P, q € Z, and g # 0 because J16 =4= =
q

Irrational numbers are those numbers which cannot be put into the form -;

where p,ge Z and g # 0. The numbers 2 ,\5, -\:;_—, \{% are irrational numbers. .
5

1.2.1 Decimal Representation of Rational and Irrational Numbers

1) Terminating decimals: A decimal which has only a finite number of digits in its
decimal part, is called a terminating decimal. Thus 202.04, 0.0000415, 100000.4 1237895
are examples of terminating decimals.

Since a terminating decimal can be converted into a common fraction, so every
terminating decimal represents a rational number.

2) Recurring Decimals: This is another type of rational numbers. In general, a
recurring or periodic decimal is a decimal in which one or more digits repeat
indefinitely.

It will be shown (in the chapter on sequences and series) that a recurring decimal
can be converted into a common fraction. So every recurring decimal represents a
rational number:

A non-terminating, non-recurring decimal is a decimal which neither terminates
nor it is recurring.. It is not possible to convert such a decimal into a common
fraction. Thus a non-terminating, non-recurring decimal represents an irrational

j ‘number. -
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Example 1:

1) 48525 (=-—2—5~—) is a rational number.
100

i), 3330 %) is a recurring decimal, it is a rational number.

1i1) 2.§(= 2.33‘3...) is a rational number.
iv) 0.142857142857 ... (=%) is a rational number.

v) 0.01001000100001... is a non-terminating, non-periodic decimal, so
it is an irrational number.

vi) 214.121122111222 1111 2222 ... is also an irrational number.

vii) 1.4142135 ... is an irrational number.

viii) 7.3205080 ... is an irrational number.

ix) 1.709975947 ... is an irrational number.

X) 3.141592654... is an important irrational number called n(Pi) which

denotes the constant ratio of the circumference of any circle to the
length of its diameter i.e.,

circumference of any circle
length of its diameter.

: 22 et bk B3 5
An approximate value of T is e a better approximation is e

and a still better approximation is 3.14159. The value of 7 correct to
5 lac decimal places has been determined with the help of computer.

Example 2: Prove /2 is an irrational number.

Solution: Suppose, if possible,ﬁ is rational so that it can be written in the form
p/q where p, g € Z and g # 0. Suppose further that p / ¢ is in its lowest form.

Then+2 = p/q, (g#0)

Squaring both sides we get;

P2 2 2
2=—2 or p°=2q 1)
q
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The R.H.S. of this equation has a factor 2. Its L.H.S. must have the same factor.

Now a prime number can be a factor of a square only if it occurs at least twice in
the square. Therefore, p’should be of the form 4p’* so that equation (1) takes the
form:

?2

4p =2¢;2 ..(2)
lesk2pi-=q" 5..(3)

In the last equation, 2 is a factor of the L.H.S. Therefore, ¢*should be of the

form 4:;{'2 so that equation 3 takes the form

2p* =49 ie., p?=2¢" SR C))
Fr;:)m equations (1) and (2),
p=2p
and from equations (3) and (4)
q=2q
P 2

q 29
This contradicts the hypothesis that P _is in its lowest form.
‘ q

Hence +/2 is irrational.
Example 3: Prove /3 is an irrational number.

Solution: Suppose, if possiblcﬁ is rational so that it can be written in the form—
plq whenp, g € Zand g # 0. Suppose further that p / ¢ is in.its lowest form,

then V3=p/q, (g#0)

Squaring this equation we get;

- pz
32;’— or p*=3q> _ <o{@D)



Chapter 1: Number Systems

The R.H.S. of this equation has a factor 3. Its L.H.S. must have the same factor.

Now a prime number can be a factor of a square only if it occurs at least twice in
the square. Therefore, p®should be of the form 9p’? so that equation (1) takes the

form:
9p"? =3¢> )
ie, 3pt=q¢° : ‘ 3) _

In the last equation, 3 is a factor of the L.H.S. Therefore, q2 should be of _the"
form 9¢'*so that equation (3) takes the form
3pt2 =9q'%4l biiieblipfd =134 4)

From equations (1) and (2),

’

p=3p

“and from equations (3) and (4)

q=3q"
P _3p
g 3¢

This contradicts the hypothesis that L is in its lowest form.
q

Hence J§ is irrational.
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1.3 Properties of Real Numbers

We are already familiar® with the set of real numbers and most of their
properties. We now state them in a unified and systematic manner. Before stating
them we give a preliminary definition.

Binary Operation: A binary operation may be defined as a function from A X A into
A, but for the present discussion, the following definition would serve the purpose.

A binary operation in a set A is a rule usually denoted by % that assigns to any pair
of elements of A, taken in a definite order, another element of A.

Two important binary operations are addition and multiplication in the set of
real numbers. Similarly, union and intersection are binary operations on sets which
are subsets of the same Universal set.

7R usually denotes the set of real numbers. We assume that two binary
operations addition (+) and multiplication (. or X) are defined in 7R . Following are

~ the properties or laws for real numbers.

1. Addition Laws: -

i) Closure Law of Addition

Va, be JR,a+be R ( V stands for “for all” )
ii) Associative Law of Addition

Y abce JR,a+ (b +c)=(a+h)+c
iii) Additive Identity

Yae JR,30e 7R such that a+0=0+a=a
(3 stands for “there exists”).

0 (read as zero) is called the identity element of addition.
iv) Additive Inverse '

Vae ’!R,H(—a)é 7R such that
a+(-a)=0=(-a)+a
v) Commutative Law for Addition
Vabe JR,a+bh=b+a
2. Multiplication Laws
vi) Closure Law of Multiplication
VabeR,abe R (a.b is usually written as ab).
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vii)

viii)

ix)

X)

S

xi)

Associative Law for Multiplication

Y a,b,c € TR, a (bc)=(ab) c

Multiplicative Identity

Yae JR,3 1€ 7R suchthata.l=l.a=a

1 is called the multiplicative identity of real numbers.
Multiplicative Inverse

Va@#0)e R.,3a' e R suchthataa’' =a’a=1 (@' 1salsownttcnas_).

Commutative Law of multiplication
VabelR,ab=ba

Multiplication — Addition Law
Vabc ek
a (b+c) = ab + ac (Distributivity of multiplication over addition).
(a+b) c = ac + bc
In addition to the above properties 7R, possesses the following properties.

i)  Order Properties (described below).
ii) Completeness axiom which will be explained in hlgher classes.

The above properties characterizes 7R ie., only 7R possesses all these

properties. Before stating the order axioms we state the properties of equality of

numbers.

4.

Properties of Equality .
Equality of numbers denoted by “=" possesses the following properties: -

i)  Reflexive property VacTR,a=a

ii) Symmetric Property VabelR,a=b= b=a

iii) Transitive Property VYabcelR,a=bab=c=a=c
iv) Additive Property VYab celR,a=b= a+tc=b+c

v) Multiplicative Property Va, b, ¢ € /R, a=b= ac = bc nca = cb.
vi) Cancellation Property w.r.t. addition
VYab ce/R,atc=b+c= a=b
vii) Cancellation Property w.r.t. Multiplication:
; Y a b,c €7R, ac=bc = a= bc#O
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S.  ‘Properties of Inequalities (Order properties)

1) Trichotomy Property VabelR
eithera=bora> bora<b

2) Transitive Property Y a bcelR
1) a>bab>c=a>c ii) a<bab<c=a<c
3) Additive Property: Va bcelR
a) i) a>b=>a+tc>b+c b) i) a>bac>d=atc>btd
na<b=atc<b+tc ii)a<bac<d=atc<b+d

4) Multiplicative Property:
a) Va bceJR andc>0

1) a>b=ac>bc ii) a<b=> ac<bc.
b) Vabce/R andc< 0,
1) a>b=>ac<bc i) a<b= ac>bc

C) Va bcdeR anda,b,c,d are all positive,
1) a>bAC>d:>ac>bd ii) a<bac<d= ac<bd




Chapter 1: Number Systems _
Example 4: Prove that for any real numbers a, b

i) a0=0 i)ab=0=a=0vb=0 [\v stands for “or”]

Solution: i) a.0=a [1+ (-1)] (Property of additive inverse)

=a(l-1) (Def. of subtraction)
=a.l-a.l (Distributive Law)
=a-a (Property of multiplicative identity)
= a+(-a) (Def. of subtraction)
=0 (Property of additive inverse)

Thus a.0=0.

(ii) Given that ab=0 (1)

e s
Suppose a # 0, then — exists
a

(1) gives: L (ab) = -l~.0 (Multiplicative property of equality)
- a a

= (i a)b= é.o (Assoc. Law of X)
=1b=0 (Property of multiplicative inverse).
=b=0 (Property of multiplicative identity).
Thus ifab=0and a+#0, thenb =0
Similarly it may be shown that
ifab=0and b #0, thena=0.

Henceab=0=a=0o0rb=0..

Example 5: For real numbers a,b show the following by stating the properties used.

i) (-a)b=a(-b)=-ab ii) (-a)(b)=ab
Solution: i) (—a)(b)+ab=(—a+a)b (Distributive law)
=0.b=0. (Property of additive inverse)
o (=a)b + ab=0
i.e., (~a)b and ab are additive inverse of each other.
2~ (=a)b= —(ab) =—ab (©— (ab) is written as —ab)

i)  (-a) (-b) —ab = (—a)(=b) + (—ab)



- =Ca)D) + (—a) (b) (By (i))
5 o oha _=':(‘-'“)(‘b +b) (Distributive law)
| _‘ EE@0=0F " (Property of additive inverse)

(Rule for produ;t of fractions).

(Golden rule of fractions)

(Rule for quotient of fractions).
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ARG
= —=—.
bENd
11 1 16
ii b). —.—=(a—).(b.0)=1.1=1
ii) (ab) ~% (aa)( b)
Thus ab and -l-% are the multiplicative inverse of each other. But
a

IR S el |
multiplicative inverse of ab is -~ ; |

a
G il
T ab ab’
a c | |
lll) EE— (ag) : (Cz)
= (ac) (l .é) (Using commutative and associative laws of multiplication)
1 ac
=ac.— = —.
bd bd
_ac_lac
“b'd |bd
: a_a . _ak_ak
V) —==Z.]l=0.—=—
b b b k ak
47214
b bk
(] 1
—  —(bd d(—.b
J 5 sl e GR
chlRc 1 bc
— —(bd) cb(—d
1 d( ) (d )
Example 7 : Does the set {1, —1} possess closure property with respect to
1) addition ii) multiplication?
Solution: i) 1+1=2, 1+ (-1)=0=-1+1
-1+ (-1)=-2

But 2, 0, -2 do not belong to the given set. That is, all the sums do not belong to
the given set. So it does not possess closure property w.r.t. addition.
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i) Li=1, LGED=-1,CD.d=-1, -D).-)=1

1. Which of the following sets have closure property w.r.t. addition and
multiplication?
i) {0} i) {1} iii) {0,-1} iv) {1,-1}

2. Name the properties used in the followihg equations.

I
; =T Since all the products belong to the given set, it is closed w.r.t. multiplication.
(Letters, where used, represent real numbers).

i) 449=9+4 ii) (a+1)+%=a+(l+%)
i) (VB+5)+v7=v3+[5+47) iv) 100+0=100
v) 1000x1 = 1000 vi) 41+(-4.1)=0
vii) a—a=0 vii)) V2x+/5 = /5x4/2
ix) a(b—¢)=ab-ac X)) (-y)z=xz-y2
xi) 4xX(5%x8)=(4x5)x8 xii) a (b+c—d) = ab + ac — ad.
3. Name the properties used in the following inequalities:
i) 3<-2=0<1 i) 5<4 =20>16
iii) 1>-1 =2-3>-5 iv) a<0 =-a>0
v) a>b =>—l—<-1— vi) a>b =-a<-b
a
4. Prove the following rules of addition: -
: a b a+b I G cii adit+ be
1) =i ll) —_—t— =
cilfes ¢ b d bd
5. 'Provethatv—:—?—-i:_ﬂ'_m'
12 18 36
6. Simplify by justifying each step: -
il a c il
. 4+16x % AL b d A
surd) — 1f) __.l__l iii) e iv) W
.‘ . 4 5 b d o T
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1.4 Complex Numbers

The history of mathematics shows that man has been developing and enlarging
his concept of number according to the saying that “Necessity is the mother of
invention”. In the remote past they started with the set of counting numbers and
invented, by stages, the negative numbers, rational numbers irrational numbers.
Since square of a positive as well as negative number is a positive number, the square
root of a negative number does not exist in the realm of real numbers. Therefore,
square roots of negative numbers were given no attention for centuries together.
However, recently, properties of numbers involving square roots of negative numbers
have also been discussed in detail and such numbers have been found useful and have
been applied in many branches of pure and applied mathematics. The numbers of the

form x+iy,where x,ye 7R and i=+/—1, are called complex numbers, here x is

called real part and y is called imaginary part of the complex number. For example,

3+4i2 _% i etc. are complex numbers.

\ = " j_ "’“ -, ."-}
II
1

Note Every real uumher isa complcx number w1th O as 1_ts_1magmafy part

Let us start with considering the equation.

X2 +1=0 _ : (1)
—5 o=
= ¢ x=i«/—_l

V-1 does not belong to the set of real numbers. We, therefore, for convenience
call it imaginary number and denote it by i (read as iota).
The product of a real number and i is also an imaginary number. Thus

2i, = _3i, «/g i, — %i are all imaginary numbers. i which may be written 1.i is also an

imaginary number.
Powers of i :

i*=—1 (by definition)
i =iti=—li=—i
i =i xi? = (=) (-1) =1
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Thus any power of i must be equal to 1, i,—1 or —i. For instance,
iB=)Si=(D%i=i

S =0 =1 =-1 etc.

1.4.1 Operations on Complex Numbers

1

2)
3)
4)

S)

With a view to develop algebra of complex numbers, we state a few definitions.
The symbols a,b,c,d, k, where used, represent real numbers.
atbi=c+di=a=caAb=d.

Addition: (a+bi)+(c+di)=(a+c)+(b+d)i
k(a +bi) =ka+kbi
(a+bi) — (c+di) = (a+bi) +[- (c +di)]
=a+bi+(—c—-di)
=(a—c)+(b—-d)i
(a+bi).(c+di)=ac+adi+bci+bdi* =(ac—bd)+(ad +bc)i.
Conjugate Complex Numbers: Complex numbers of the form (a+bi) and .

(@ —bi) which have the same real parts and whose imaginary parts differ in sign
only, are called conjugates of each other. Thus 5 + 4 i and 5-4i, —2 +3i and

-2-3i, —Jg i and /5 i are three pairs of conjugate numbers.

1.4.2 Complex Numbers as Ordered Pairs of Real Numbers

We can define complex numbers also by using ordered pairs.

Let C be the set of ordered pairs belonging to 7R x 7R. which are subject to the
following properties: -

i) (a,b)=(c,d) ®a=crb=d.

i) (a,b)+(c,d)=(a+c,b+d)

ii1) If k is any real number, then k(a,b)=(ka, kb)

iv) (a,b) (c,d) = (ac—bd, ad + bc)

The_n Cis called the set of complex numbers. Itis easy to see that
(a,b)—(c,d) = (a—c, b—ad)
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4. Simplify the following:

i) if) il i) (=i)" nving. Ty sl
5. Write in terms of i
. J it L3516 . 1
DET6 i s i v) =
Simplify the following:
6. (7,9)+(3,-5) 7. B-5)-(7.4 8 (2637
9. (5,4) (-3,-2) 10. (0,3)(0,5) 11. (2,6)=G.).
12561 ) ETs) (mmforu:(z'@=2+6f><3‘7f ete.)
Gl ArTiad=Ti

13. Prove that the sum as well as the product of any two conjugate complex
numbers is a real number.

14. Find the multiplicative inverse of each of the following numbers:
i) L (a4) ii) (v2,-+5) i) (1,0)

15. Factorize the following:
i) a’ +4b? ii) 9a% +16b%*  iii)  3x? +3y?

16. Separate into real and imaginary parts (write as a simple complex number): -

2-7i 1= o (=2+3i)° i :

i) - e A1 11)) T
4+5i (€ ) 1+i

1.5 The Real Line

B 7 6 5 4 3

i)

s
Fig. (1)

In Fig.(1), let X’ X be aline. We represent the number 0 by a point O

(called the origin) of the line. Let | OA| represents a unit length, According to this

unit, positive numbers are represented on this line by points to the right of O and
negative numbers by points to the left of O. It is easy to visualize that all +ve and
«ve rational numbers are represented on this line. What about the irrational numbers"
The fact is that all the irrational numbers are also represented by pomts of
the line. Therefore, we postulate: - ¢
Postulate: A (1 — 1) correspondence can be established between the pomts of a hne l
and the real numbers in such a way that: - :
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Let (a,0), (c,0) be two elements of this subset. Then
i) (a,0)+ (c,0) =(a+c0) il) k(a,0) = (ka, 0)
iii) (a,0) X (¢, 0) =(ac,0)

iv) Multiplicative inverse of (a, 0) is (l. 0} at0.
_ a

Notice that the results are the same as we should have obtained if we had
operated on the real numbers a and c ignoring the second component of each ordered
pair i.e., 0 which has played no part in the above calculations.

On account of this special feature we identify the complex number (a, 0) with
the real number a i.e., we postulate:

(a,0)=a : (1)
Now consider (0, 1)
©, 1).(,1)=(-1,0)
=—1 (by (1) above).
If weset (0,1)=1i
then (0,))> = (O,DO,)=i.i=i*=-1

)

We are now in a position to write every complex number given as an ordered

pair, in terms of i. For example

(a,b) =(a0)+ (0,b) (def. of addition)
=a(,0)+5(0,1) - (by (1) and (2) above)
=a.l+bi
= a+ib

Thus (a,b) = a + ib .where i’ =—1

This result enables us to convert any Complex number given in one notation into
the other.

48 e
1.  Verify the addition properties of complex numbers.
2.  Verify the multiplicition properties of the complex numbers.
3. Verify the distributive law of complex numbers.

(@, b)[(c,d)+(e, )]= (@,b) (c,d) +(a,b) (e.f)
(Hint: Simplify each side separately)
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4. Simplify the following:

i) i° i) i T () Gy
5.  Write in terms of i ;
i) V=15 Y HER ) SO iv) Fe
| 25 =%
Simplify the following:
6. (7,9)+(3,-5) 7. (8-5-(7,4 8 (26)37)
9 N (540 (310) 10. (0,3) (0,5) 11. (2,6)+(3.7).
122952 4y LA lR) FnCror I SOt 0lg Ol FE
(37) 3+7i 3-7i

13. Prove that the sum as well as the product of any two conjugate complex
numbers is a real number.
14. Find the multiplicative inverse of each of the following numbers:

) (4,7 ii) (J_ —Js). . iii)ge (1:0)

15. Factorize the following:

i) a? +4b? ii) 9a? +16b%  iii)  3x? +3y?
16. Separate into real and imaginary parts (write as a simple complex number): -
A 3 s w2 . }
i = I L
4+ 5i (1+i ) 1+
1.5 The Real Line -
“+— T S e T
Xé it X
z Fig. (1)

In Fig.(1), let X’ X be aline. We represent the number 0 by a point O
(called the origin) of the line. Let | OA| represents a unit length. According to this

unit, positive numbers are represented on this line by points to the right of O and
negative numbers by points to the left of O. It is easy to visualize that all +ve and
;ve rational numbers are represented on this line. What about the irrational numbers?

The fact is that all the irrational numbers are also represented by pomts of
the line. Therefore, we postulate: - f
Postulate: A (1 — 1) correspondence can be established between the pomts of a lme l
and the real numbers in such a way that: -
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i) The number O corresponds to a point O of the line.

ii) The number 1 corresponds to a point A of the line.
iii)

If x,, x,are the numbers corresponding to two points P, P,, then the
distance between P, and P, will be | x, —x, |.

It is evident that the ‘above correspondence will be such that corresponding to
any real number there will be one and only one point on the line and vice versa.

When a (1 - 1) correspondence between the points of a line x” x and the real

numbers has been established in the manner described above, the line is called the

real line and the real number, say x, corresponding to any point P of the line is called

‘the coordinate of the point. i

b

l 5.1 The Real Plane or The Coordinate Plane

We know that -the cartesian
product of two non-empty sets A
and B, denoted by A X B, is the set:
AxXB={(x,y)lxe AAye B}

The members of a cartesian y«—& 34 2 2 3 g Lt R B
product are ordered pairs. 1
The cartesian product 7R x7R. ‘
where 7R, is the set of real numbers  D(3d)
is called the cartesiun plaie. :

By taking two perpendicular
lines x’oxand y'oy as coordinate _
axes on a geomettical plane and Fig. (2) X
choosing a convenient unit of
distance, elements of TR XJR. can be represented on the plane in such a way that

there is a (1-1) correspondence between the elements of ’R,x’/?, and points of the
plane

C(-4.3)

—t
R N D R L -

E(5,-4)

+ + +
b b ' '
[ P

= —

The geometrical plane on wluch coordinate system has been specified is called
" the real plane or the coordinate plane. :

: Ordmanly we do not distinguish between the Cartesian plane 7R 7K. and the _‘
Cmfdlnate plaue whose points correspond to or represent thc elements of RXTR..

g
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If a point A of the coordinate plane corresponds to the ordered pair (g, b) then
-.a, b are called the coordinates of A. a is called the x-coordinate or abscissa and b is
called the y — coordinate or ordinate.

In the figure shown above, the coordinates of the points B,C,D and E are (3,2),
(-4,3), (-3,-4) and (5, —4) respectively. ‘

Corresponding to every ordered pair (a, b) € 7R X7R. there is one and only one
point in the plane and corresponding to every point in the plane there is one and only
one ordered pair (g, b) in 7R X7R..

There is thus a (1-1) correspondence between 7R X7 and the plane.

1.6 Geometrical Representation of Complex Numbers
The Complex Plane

We have seen that there is a (1-1) correspondence between the elements,
(ordered pairs) of the Cartesian plane 7R XK. and the complex numbers. Therefore;
there is a (1-1) correspondence between the points of the coordinate plane and the
complex numbers. We can, therefore, represent complex numbers by points of the
coordinate plane. In this representation every complex number will be represented by
one and only one point of the coordinate plane and every point of the plane will
represent one and only one complex number. The components of the complex
number will be the coordinates of the point representing it. In this representation the
x-axis is called the real axis and the y-axis is called the imaginary axis. The
coordinate plane itself is called the complex plane or z — plane.

By way of illustration a number of complex numbers have been shown in figure 3.

The figure representing one or 3
more complex numbers on the complex
plane is called an Argand diagram.
Points on the x-axis represent real
numbers whereas the points on the y-
axis represent imaginary numbers. T et b et

In fig (4), x,y are the coordmates +1 F(2-0)

of a point. ool i
P (-320) E 2

(3+21)

—t—t"
_ 0w e

It represents the complex-number

x+iy. The real number Fig. (3) +4
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i
-\/ x* + y? ‘is called the modulus of the

}F
complex number a+ ib. 1
In the figure MAL o x ¢ AG+ly)
.'.aﬁ':x,m:y 0

In the right-angled triangle OMA, '
we have, by Pythagoras theorem, : O il
|OAF=10M I* +| MA?

~10A = Xt +y? Fig (4)

v,

s y
Thus |OAl represents the modulus of x + iy. In other words: The modulus of a

complex number is the distance from the origin of the point representing the
number. The modulus of a complex number is generally denoted as: lx+ yil or
I, )l. For convenience, a complex number is denoted by z.

If z=x+iy=(xy), then

lzl= {x*+y?

Example 1! Find moduli of the following complex numbers :

i) 1-iV3 (i) 3 (iii) —5i (iv) 3+ 4i
Solution: = |

i) Letz=1-i\3 ‘) Letz=3

o z=1+i(—~f§) _ .. orz=3+0i

. . P 2 2
X me i ‘..Izl-: (3)? +(0)* =3
=1+3=2 . :

i) Let z=-5i iv) Let z=3+4i

or z=0+(=5)i s lzl=4(3)% 4 (4)? |
slzl=02 +(=5)% = = J9¥16=5
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Theorems: Vz z,z,€C, |
D |-zl=lel=lzl=]-2] @ = |
Pl 2 2 TEY L |
iii) 2Z =] iv) z,+2, =7, +7,
b4 Z ;
v) [+ |==L, 2, #0 o) lziez 1=tz Lz, |
zg Zg .k

vii) Lz, -1z, ISl 2, + 2, IS 1z, 1+1z, |

Proof :(i): Let z=a+ib,

So, —z=—-a-ib,7=a—iband —zZ=—-a+ib ;
o |- z|=ya)? +(-b)* =a® +b> (1) E
|z|=va? +b? @) 1

|Z| = y(@)? +(b)* =Va? +b 3) %
|-Z|=(=a)? +(6)? =Va? +b? @) "'

By equations (1), (2), (3) and (4) we conclude that
|-z|=|z| =|z|=[-Z|
(ii) Let z=a+ib
sothat z =a—ib
Taking conjugate again of both sides, we have

; . Z=a+ib=z
(iii) Let z=a+ib sothat Zz=a-ib
B :. zZ=(a+ib)(a—ib)

=a® ~iab+iab—i’b*

=a? —(-1)b?

=a® +b* =|7°
(iv) Let z;, =a+ib and z, =c+id,_then
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z, +z,=(a+ib)+(c +id)
=(a+c)ti(b+d)

S0, Z, +2, =(a+c)+i(b+d) (Taking conjugate on both sides)

=(a+c)—i(b+d)
= (a-1ib) + (c- id) =z,4Z,

(v) Letz =a+ib and z, =c+id, where z, #0, then

g, _a+ib

2, c+id

=a+ibxc—id
c+id c—id

_ (ac+bd)+i(bc—ad) ac+bd

(Note this step)

c* +d? ¢t +d?

5 g
Z;

4
2

_ac+bd+ibc-ad
ct+d* c*+d?
2 ac+bd_ibc—ad
c*+d* c*+d?
a+ib < a—1ib
c+id c-—id
a—ib c+id
= X
c—id c+id
_ (ac+bd)—i(bc—ad)
c*+d?
_ac+bd _ibc—ad
ciddricid?
From (1) and (2) , we have

LI
Z, 5
(vi) Letgz =a+ib and z, =c+id, then
|z,.2, |=1(a+ib) (c+id)l
= | (ac —bd)+ (ad + be)i |
=+/(ac—bd)? +(ad + bc)?

Nm———

Now

Ralll K]

=Va’c? +b%d* +a’d® +b’c* |

=(@® +b*)(c* +d?)

-

(1)

2)

P
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Chapter I Number'Sjmtems !
This result may be stated thus: -

The modulus of the product of two complex numbers is equal to the product of
their moduli.

(vii) Algebraic proof of this part is tedius, Therefore, we prove it geometrically.

F 9

|
|
|
|

¥ 3

Fig (3)
In the figure point A represents z,= a + ib and point C represents z,=c + id. We

complete the parallelogram OABC. From the figure, it is evident that coordinates of 1
B are (a + c, b + d), therefore, B represents

g+ z,=@+o)+(b+d)i andlﬁl:lzgzﬂ.

Also 10A| = z,], |ABI=10C =z,

Inthe AOAB; OA + AB > OB (OA =mOA etc.)
Szl lz, 1>z + 7,1 (1)
Also in the same triangle, OA — AB < OB
sz l-lz,)l <lz+ z, : @)
Combining (1) and (2), we have
Izl =1z, <lz;+ z,1 < 1z 1+ 12,]
which gives the required results with
inequality signs.
Results with equality signs will hold when
the points A and C representing z, and z,become

.G
collinear with B. This will be so when —=—

d

(see fig (6)).




l' .' A Textbook of Algebra and Trigonometry
11—

In such a case

lzll+lzzl=lﬁl+|al

= 10B1+1BCI
= 10C|
= lz, + z,l
Thus |z, + z,| = Izl +12,l
The second part of result (vii) namely
Iz iz, 15 <l Z |+ 2,4
is analogue of the triangular inequality”. In words, it may be stated thus: -

The modulus of the sum of two complex numbers isless than or equal to the
sum of the moduli of the numbers.

Example 2: If z=2 + i, z,= 3—-2i, z,= 1+3i then express

4% in the forma + ib
6}
(Conjugate of a complex number z is denoted as Z)
Solution: '
7,2, _+)A+3) . (2-i) (-3i)
z, 3-2i 3-2i
_ (2-3)+(-6-Di _ Sl
3-2i ~ 3=

_ (1=T7i) 3+2)
(3—-2i) (3+2i) _
D3I (22011523,
: 3% +2% <1131 13
ExampleS Show that Vzl, %,E€C, n5,=2 4

Soluhon_. Let z,=a+bi, z,=c+di

2, 2, =(a+bi) (c+di) =(ac—bd)+(ad +bc)i |
=(ac—bd) — (ad +bc) i ' (1)

* s

=

‘In any triangle the sum of the lengths of any two sides is greater than the length of the t.hud side and
difference of the lengths of any two sides is less than the length of the third side.

e e




2,.2, = (a+bi) (c+di)
=(a—bi) (c—di)

Chapter 1: Number Systems
I
!

=(ac —bd) + (—ad —bc)i (2) !

Thus from (1) and (2) we have, z, z, = Z Z
Polar form of a Complex number : Consider ) |
adjoining diagram representing the complex . § f
; A(x+1iy) ;

number z=x+iy. From the diagram, we see i~ | {
: % EJ’ =rsiné |

that x=rcos@and y = rsin@ where r=lz| and . |
> 0 xX=rcosé ‘l:f > x j

8 is called argument of z.

Hence  x+iy=rcos6 +wrsinf ....(0)

where r=4x*+y> and @ =tan

|
{
|
Equation (i) is called the polar form of the complex number z . 1
|
{

Fig (7)

£

Example 4: Express the complex number 1+ i~/3 in polar form.
Solutoin : :
Step-I: Put rcos@ =1 and rsinf = 3

Step-dI:  r2=(1)*+(3f
=r'=143=4 =r=2

V3

Step-III : 6 =tan™ T:tzm'l V3= 60°

Thus  1+iv/3 =2 cos 60° +i2sin 60°
De Moivre’s Theorem : -
(cos@ +isin@)" =cosnf +isinnb,Vne Z
" Proof of this theorem is beyond the scope of this book.

1.7 To find real and imaginary parts of

o\
+
) (x+iy)" ii) [ﬂ—f”—’],xznyﬂao
X, +1y,

forn =17 =253 s
i) Let x=rcos@® and y=rsin6, then
(x+iy)" =(rcosf +irsinB)"
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=(rcos@ +irsin@)”"
[r(cos@ +isin@)]"
= r"(cos@ +isin@)"

= r"(cosnB +isinn0) (By De Moivre’s Theorem)
= r"cosn@ +ir" sinné

Thus r"cosn6 and r"sinn@ are respectively the real and imaginary parts of
(x+iy)".

b 5%
Where r=+/x*+y®> and @ =tan™ =,

y
1) Let x, +iy, =1 cos, +1sin6, and x, +iy, =r, cosf, +r,sin6, then,
n » J n g n
X+, | [ ncos6, +1isin6, | 1" (cos8, +isiné,)
- = - = i = - L
X, +iy, r;c0s0, +r,isinG,)  1,"(cosd, +isin6, )

=1_(cos®, +isin, )" (cos@, +isin@, )™
2

= 1_(cosnf, +isinnd,) (cos(-n8), +isin(-n8,) ),
£

(By De Moivre’s Theorem)

= 1_(cosnb, +isinn®, ) (cosn8, —isinn6,), (cos(-8) = cosh
n

sin(=6) = —sinf)

= 2L [(cosn6, cosn, +sin n6, sinné, )

r

+i(sinn, cosn8, —cosn@, sinnb, )|

= ﬁn— [COS(HB, -n6,) +1 pin(n6, —no, )]‘.'COS(G.—B)=C£JSC1 cosP +sinasinf
rz ek r y r

and sin (& - fB) = sin & cos B~ cos & sin B
= [cosn(8, -6,)+ isinn(6, —6,)]

rz I

= -1~ [eosn(, -6, yisin n(6, ~6,)]
r 4

2
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Thus r‘ﬂ cosn(@, —0,) and r,n sinn(6, —0,) are respectively the real and
) £
imaginary parts of (MJ , X, +iy, #0
X, +1y,

2 = 2 2 =
where r, =/x,"+y," ; 6, =tan™' 2 and n=AX Y, 6, =tan”' 2

Example 5: Find out real and imaginary parts of each of the following complex

numbers.
5
. 1-+3i
) W3+i i)
(W3+) [1+J§ ;'J
Solution :
i) Let rcosf = \E and rsin@® =1 where
r*=(3f +1* or r=+3+1=2and 6=tan" %=30°
So, (\E +i)1 = (rcos@ +trsin )’
=r? (cos 30 + isin30) (By De Moivre’s Theorem )
=2"(c0s90" +isin90°")
=8(0+i.1)
=81
Thus 0 and 8 are respectively real and imaginary Parts of («E +i)’.
i) Let r,cos6,=1 and 7, sin6, = —/3
=r =,/(1)2 +(=3)" =+1+3 =2 and 6, =tan"-?=—60"
Also let r, cos6,=1 and r, sin@, =3

=r, =12 +(.,./3—)2 =1+3=2 and 6, = tan™ —Jlj-zﬁ()"

-3 ) 2(cos(=60°) +i sin(~60°)) :
So =
143 i 2(cos(60°) +isin(60°))
_ (cos(=60°) +isin(=60°))
(cos(60°) +isin(60°)

= (cos(~60°) +isin(~60°) (cos(60°) +isin(60°) ]

—

S —— = - s

e ol St

S T A I SR = B Al
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= (cos(—300°) + isin(~300°) {cos(~300°) + i sin( 300°) By De Moivre’s Theorem

= \cos(300°) - :sm(300°)Icos(300°) :sm(300°)) " cos (=6) = cos 6
and sin(—8)=-—sin@
. :
20 2 2

AT
\1+443i)

. g __ il
1. Graph the followmg numbers on the complcx plane -
i) 243 ii) 2—-3i i) —2-3i iv) —2+3i
v) =6 vi) i vii) %—%:‘ Vi) —5- 6i
2. Find the multiplicative inverse of each of the following numbers: -
i)-3i i) 1-2i i) —3-5i iv) (1,2)
3. Simplify ;
i) ' i) (-ai)',ae R iii) i~ iv) i7"

4. Prove that z = z iff zis real.
5. Simplify by expressing in the form a + bi
L) 54204 i)  (2+V=3)3+=3)
iii) g2 1 iv) = T
548 e T

6. ShowthatVzeC

i) z®+7Z is areal number. ii) (z -z )2 is a real number.
7. Simplify the following

\3
1) (-—1-+’—/§i ii) [—l—EJ
2= ) 29082
\2
m); (——5—_3:'} -%-lgf - iy) (a+bi)
V) (a+bi)? vi) (a+bi)
vii) (a—pi) | vm)( -J_ )_
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2.1 Introduction

We are familiar with the notion of a set since the word is frequently used in
everyday speech, for instance, water set, tea set, sofa set. It is a wonder that
mathematicians have developed this ordinary word into a mathematical concept as
much as it has become a language which is employed in most branches of modem

mathematics.

For the purposes of mathematics, a set is generally described as a well-defined
collection of distinct objects. By a well-defined collection is meant a collection,
which is such that, given any object, we may be able to decide whether the object

belongs to the collection or not. By distinct objects we mean objects no two of which
are identical (same).

The objects in a set are called its members or elements, Capital letters 4, B, C,

X, Y, Z etc., are generally used as names of sets and small letters a, b, ¢, x, y, z etc,,
are used as members of sets.

There are three different ways of describing a set.

i)  The Descriptive Method: A set may be described in words. For instance,
~ the set of all vowels of the English alphabets.

ii) The Tabular Method: A set may be described by listing its

elements within brackets. If A is the set mentioned above, then we may
write:

. A={a,ei,ou}
iii)  Set-builder method: It is sometimes more convenient or useful to

employ the method of set-builder notation in specifying sets. This is done _

by using a symbol or letter for an arbitrary member of the set and stating

the property common to all the members. Thus the above set may be
written as:
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A={xlxisa vowel of the English alphabet}

This is read as A is the set of all x such that x is a vowel of the English
alphabet.

The symbol used for membership of a set is €. Thus a€ A means a is an

element of A or a belongs to A. ¢ ¢ A means ¢ does not belong to A or ¢ is not a
member of A. Elements of a set can be anything: people, countries, rivers, objects of

our thought. In algebra we usually deal with sets of numbers. Such sets, alongwith
their names are given below: -

N = The setof all natural numbers = {1,2,3,...}

W = The set of all whole numbers = {0,1.2,...}

Z = The set of all integers = {O,il,iz,...}.
Z’ = The set of all negative integers = {~1,-2,-3,...}.
O = The set of all odd integers = { a5 b tlam), }
E = The set of all even integers ={0,42,+4,.}.

Q = The set of all rational numbers = {xlx:ﬁwherep. qez andq#ﬂ}
q

" Q' =The set of all irrational numbers = {xlxae P \where p,ge Zand g # 0}
q
JR. = The set of all real numbers =QuQ

Equal Sets: Two sets A and B are equal i.e., A=B, if and only if they have the same
elements that is, if and only if every element of each set is an element of the other set.

Thus the sets { 1,2, 3 } and { 2, 1, 3} are equal. From the definition of equality
of sets it follows that a mere change in the order of the elements of a set does not alter

-the set. In other words, while describing a set in the tabular form its elements may be
writtér in any order. |

~ Equivalent Sets: If the elements of two sets A and B can be paired in such a way that
each element of A is paired with one and only one element of B and vice versa, then.
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such a pairing is called a one-to-one cbrrespondence between A and B.e.g., if
A = {Billal, Ahsan, Jehanzeb} and B = {Fatima, Ummara, Samina}
then six different (1 — 1) correspondences can be established between A and B.
Two of these correspondences are shown below: -
i). {Billal, Ahsan, Jehanzeb}

{Fatima, = Ummara, Samina}
i1). {Billal, Ahsan, ¢+ Jehanzeb}

{Fatima, Samina, Ummara}
(Write down the remaining 4 correspondences yourselves) ' -

Two sets are said to be equivalent if a (1 — 1) correspondence can be established
between them. In the above example A and B are equivalent sets.

Example 1: Consider the sets N="{1,2,3,...}and 0={1,3,5,...} ,

We may establish (1-1) correspondence between them in the following manner:
{1,2,3,4,5, ...}

P
133,55 750

{1,3,5, }

Thus the sets N and O are equivalent. But notice that they are not equal.

Remember that two equal sets are necessarily equivalent, but the converse may ¢
not be true i.e., two equivalent sets are not necessarily equal.

Sometimes, the symbol ~ is used to mean is equivalent to. Thus N ~ O.

Order of a Set: There is no restriction on the number of members of a set. A set may
have 0, 1, 2, 3 or any number of elements. Sets with zero or one element deserve
special attention. According to the everyday use of the word set or collection it must
have at least two elements. But in mathematics it is found convenient and useful to
consider sets which have only one element or no element at all. ‘

A set having only one element is called a singleton set and a set with no
elements (zero number of elements) is called the empty set or null set. The empty

. set is denoted by the symbol O or { }. The set of odd integers between 2 and 4 isa -
singleton i.e., the set {3} and the set of even integers between the same numbers is’
_the empty set.
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The solution set of the equation x*+1=0, in the set of real numbers is also the

empty set. Clearly the set {0} is a singleton set having zero as its only element, and
not the empty set.

Finite and Infinite sets: If a set is equivalent to the set {1, 2, 3, ...., n} for some
fixed natural number n, then the set is said to be finite otherwise infinite.

Setsof numbers N, Z, Z’etc., mentioned earlier are infinite sets.

The set {1, 3, 5, ...., 9999} is a finite set but the set { 1, 3, 5, ...}, which is the
set of all positive odd natural numbers is an infinite set.

Subset: If every element of a set A is an elerneut of set B, then A is a subset of B.
Symbolically this is written as: A B (A is subset of B)

In such a case we say B is a super set of A. Symbolically this is written as:
NS BOA (B is a superset of A)

deﬁml:qu_may also be stated as fellows
A CB iff "-'e'A=a~xeB : '
Proper Subset IfAis a subset of B and B contams at 1easl one element which is not

an element of A, then A is said to be a proper subset of B. In such a case we write:
A c B (A is a proper subset of B).

Improper Subset: If A is subset of B and A = B, then we say that A is an improper

subset of B From this definition it also follows that every set A is an improper subset
of itself.

Example 2: LetA={aq b, c }, B={cab}and C={aqb,c }thenclearly
AcC BcCbutA=B and B =A.

Nouce that each of A and B is an unproper subset of the other because A= B

A

- Theorem 1.1: The - empty set is a subset of every set.

We can convince ourselves about the fact by rewording the deﬁmtmn of subset
 as follows: -

- Ais subset of B if it contains no element which is not an element of B.
dm%y an empty set does not contain such element, which is not contained by .




Power Set: A set may contain elements, which are sets themselves. For example if:
C = Set of classes of a certain school, then elements of C are sets themselves because
each class is a set of students. An important set of sets is the pewer set of a given set.

The power set of a set S denoted by P (S) is the set containing all the possible
subsets of S.

Example 3: If A = {q, b}, then P (A) = {@, {a)}, {b}, {a,b}}

Recall that the empty set is a subset of every set and every set is its own subset.
Example 4: If B = {1, 2, 3}, then

P(B)={®, {1}, {2}, {3}, {1,2}, {1,3}, (2,3}, {1,2.3}}
Example S: If C = {q, b, ¢, d}, then

P(C)={@, {a}, (b}, {c}, {d}, {a, b}, {a,c}, {ad}, {bc}, {b.d}, {cd},
{a,b,c}, {a,b,d}, {a,cd}, {b,cd}, {ab,cd}}.
Example 6: If D = {a}, then P(D) = {®, {a}}

Example 7: If E= { } then P(E) = {¢}

oy i G TS N

Note (1) The power set of the empty sct is not empty :

L (@) Letn (S) denoted the number of elements oﬁ'a -set’S‘ﬂlen 'r{P(S)} denotas
% the number of elements of the power set 7
. we get the following tablé: of msults e grig

n(S) MR & [y R G2 gt ST

n{P(S)} | 1=20 | 2220 | 4=2 | 8=2° | 16=2". _'3i=2’

Ingenerahfn(S) m, then, n P(§)=2"

Umversal Set When we are studymg any branch of mathemaucs the sets wnth which
we have to deal, are generally subsets of a blgger set. Such a set is called the
Universal set or the Universe of Discourse. At the elementary level when we are
" studying arithmetic, we have to-deal with whole numbers only. ‘At that stage the set

of whole numbers can be treated as Universal Set. At a later stage, when we have to

deal with negative numbers also and fractions, the set of the ranona! numbers can be
treated as the Universal Set.

Chapter. 2: Sets, Functions and Groups _ |
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For illustrating certain concepts of the Set Theory, we sometimes consider quite

small sets (sets having small number of elements) to be universal. This is only an
academic artificiality.

1.  Write the following sets in set builder notation: _
i) {1,2,3, ...., 1000} i) {0, 1,2,...., 100}
i) {0,+1,+2,....,+1000} iv) {0,-1,-2,....,-500}
V) {100, 101, 102, ...., 400} vi) {-100,-101, -102,....,-500}
vii)) {Peshawar, Lahore, Karachi, Quetta}

viii) {January, June, July} ix) The set of all odd natural numbers
X) The set of all rational numbers

xi)  The set of all real numbers between 1 and 2,
xii) The set of all integers between — 100 and 1000

2. Write each of the following sets in the descriptive and tabular forms: -

i)  {xlxe N A x<10}) i) {xlxe N Ad<x<12)
iii) {xlxe Z A-5<x<5} iv) {xlxe E A2 <x<4}

v) {xlxe PA x<12} vi) {xlxe OA3<x<12}
vii) {xlxe EA4<x<10) viii) {xlxe EA4< x<6)}
ix) {xlxe OA5<x<7) x) {xlxe OA5<x<7)
xi) {xlxeNAx+4=0) xii) {xlxeQAx* =2}

xiii) {x|xe 72 Ax=1x) xiv) {xlxe QAx=-x}
xv) {xlxe 7 Ax#x} xvi) {xlxe R A X & Q}

3. Which of the following sets are finite and which of these are infinite?
i) . The set of students of your clasé. |
i)  The set of all schools in Pakistan.
i) The set of natural numbers between 3 and 10. _
iv)  The set of rational nurﬁb_ers between 3 and 10.
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V) The set of real numbers between 0 and 1.

vi) The set of rationales between 0 and 1
vii)  The set of whole numbers between 0 and 1

viii)  The set of all leaves of trees in Pakistan.

ix) P x) P{abc}

X {1,2,34,...) xii) {1,2,3,....,100000000}

xiii) {xlxe 7R Ax#x) xiv) {xlxe 7R Ax* =-16}

xv) {xlxeQax’=5) xvi) {xlxeQA0<x<1} : |

Write two proper subsets of each of the following sets: -
1) {a b, c} i) (0,1} iii) N iv) Z
v) Q vi) R vii) W viii) {xlx€e QA0<x<2)

Is there any set which has no proper sub set? If so name that set.
What is the difference between {a, b} and {{a,b}}?
Which of the following sentences are true and which of them are false?

) (1,2} = 2.1} i) ocfa)} D {a}c {{a}
iv) {a)e {{a}} v) ae{{a}} vi) @€ {{a}}

What is the number of elements of the power set of each of the following sets?

DR (R ) i) {0;1} iii) {1,2,3,4,5.6,7}

iv) {0,1,234,567} v) {a {&c}} vi) {la.b)ib.c). {d.e}}
Write down the power set of each of the following sets: -

i) {9,11) i) {+-%x+ ii) {®} iv) {a {b.c}}

i o et e =
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10. Which pairs of sets are equivalent? Which of them are also equal?

Db c); (1, 2,3}

ii) The set of the first 10 whole members, {0, 1, 2, 3, ....,9}

iii) Set of angles of a quadrilateral ABCD,
set of the sides of the same quadrilateral.

iv) Set of the sides of a hexagon ABCDEF,

set of the angles of the same hexagon;

V(1234 M oldieis TS i) (1234, (1 el

B

L L
2’3

vii) {5, 10,15, 20, ...., 55555}, {5, 10, 15, 20, ...}
2.2 Operations on Sets

Just as operations of addition, subtraction etc., are performed on numbers, the

operations of unions, intersection etc., are performed on sets. We are already familiar
with them. A review of the main rules is given below: -

Union of two sets: The Union of two sets A and B, denoted by AUB, is the set of all
elements, which belong to A or B. Symbolically;

AUB = {x|xe Av xe B}

Thus:fA {1 23} B= {2345} then AUB = { 1,2,3,4,5}
s Lt R ,j_;gmely the elemcnts 23 have '
irepeuﬁoh‘of an clement of a set is not

Intersecuon of two sets The mtersectmn of two sets A and B, .denotcd by A N B 1s.
the set of all elements, which belong to both A and B. Symbolically;

ANB={xlxe AAnxe B} .
Thus for the above sets A and B, AnB=(23}

Disjoint Sets: If the intersection of two sets is the empty set then the sets are said to
be disjoint sets. For exaf;lple; if -
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S, = The set of odd natural numbers and S, = The set of even natural numbers,

then S, and S, are disjoint sets.

e

The set of arts students and the set of science students of a college are disjoint
sets.

Overlapping sets: If the intersection of two sets is non-empty but neither is a subset
of the other, the sets are called overlapping sets, e.g., if

L={23,4,5,6)} and M = {5,6,7,8,9,10}, then L and M are two overlapping sets.

Complement of a set: The complement of a set A, denoted by A” or A° relative to the
universal set U is the set of all elements of U, which do not belong to A.

Symbolically: A’={x|xe U A x¢ A}
For example, if U=N,then =~ E’=0 and O'=E
Example 1: If U = set of alphabets of English language, C = set of consonants,
W = set of vowels, then C’=Wand W’'=C.

Difference of two Sets: The Difference set of two sets A and B denoted by A-B
consists of all the elements which belong to A but do not belong to B.

The Difference set of two sets B and A denoted by B—A consists of all the
elements, which belong to B but do not belong to A.
Symbolically, A— B ={xlx€ AAx¢ B} and B—A={xlxe BAxg A}
Example 2: If A = {1,2,3,4,5}, B = {4,5,6,7,8,9,10}, then
A-B= {123}and B-A= {678910}

2 3 Venn Dlagrams

Venn diagrams are very useful in depicting visually the basic concepts of sets
and relationships between sets. They were first used by an English logician and
“mathematician John Venn (1834 to 1883 A.D).

In a Venn diagram, a rectangular region represents the universal set and régions

i

!

L ,
bounded by simple closed curves represent other sets, which are subsets of the }
. ' !
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universal set.. For the sake of beauty these regions are generally shown as circular

regions.

In the adjoining figures, the shaded circular region

represents a set A and the remaining portion of"
rectangle representing the universal set U
represents A” or U-A.

Below are given some more diagrams

illustrating basic operations on two sets in different cases (lined region represents the
result of the relevant operation in each case given below).

AUB%%
o @5
- @O
no® @ O | O,

Theabove diagmms‘sugg&st the following results:-
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Fig Relation between Result Suggested

No. Aand B
4| 15 A and B disjoint sets | AU B consists of all the elements of A and all the

ANB=0 elements of B. Alson (AUB) = n (A) + n (B)

2. A and B are AU B contains elements which are
overlapping i)in A and notin B ii) in B and not in A
ANB#® iii) in both A and B. Also

.n(AUB)=n(A)+n(B)- (AnB)

AcB AUB = B; n(AuU B)= n(B)

4 -BcA, * - FAUBSA n(AUB)= n(A)

S ANB=® ANB=®; n(AnB)=0

6. ANB+® AN B contains the elements which are in A and B

7 AC B ANnB=A; n(AnB)=n(A)

8. BcA ANnB=B; n(AnB)=n(B)

9. AandBaredisjoint |A-B=A; n(A-B)=n(A)
sets.

10. AandBare n(A-B)=n(A) -n (ANB)
overlapping

11. AcB A-B=0; ' n(A—B)=0.

122 BcA A-B#®; n(A-B)=n(A)-n(B)

13. A and B disjoint B—-A = B; n(B—-A) =n(B)

14. AandBare n(B-A)=n(B)-n(AnB)
overlapping ' '

IS8 ACB B-A#®:n(B-A)=n(B)-n(A)

16" B cA B-A=®;n(B-A)=0
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set eunmﬁh ‘no‘ elements therefore, no pomon of U

a-.__ -

a\.'- 3

(Ffém Fig. Tor4) -
(me Fig 5 or 8)

: (FromFig 9 or 12)
o (F:emmg 13orl6)
by A (by unaglnmg the reglons represented by A and B!

1. Exhibit AUB and A N B by Venn diagrams in the following cases: -
i) ACB i) BcCA iii) AUVA
iv) A and B are disjoint sets. V) A and B are overlapping sets

2. Show A-B and B-A by Venn diagrams when: -
i) A and B are overlapping sets i) AcB ii) BcA

3. Under what conditions on A and B are the following statements true? |
i) AuB=A4 ii) AUB=B iii) A—B=A
i) AnB=B V) n(AUB)=n)+n(B)  vi) n(AnB)=n(4)
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vi) A-B=A viii)) n(ANB)=0 ix) AUB=U

X) AUB=BUA xi) n(AnB)= n(B). xil) U-A=P

4. LetU={1,2,34,5,6,7,8910}, A={246,38,10}, B={12345}
and C ={1,3,5,7,9}
List the members of each of the following sets: -
T A ii) B¢ iii) AUB iv) A-B
v) AnC vi) A°UCF vii)) A°UC. viil) U

S.  Using the Venn diagrams, if necessary, find the single sets equal to the
following: -
i) A° HANU )AvU iv)AU @ vV)®ND.

6. Use Venn diagrams to verify the following: -
i) A-B=ANB' i) (A-B)NnB=B

2.4 Operations on Three Sets

If A, B and C are three given sets, operations of union and intersection can be

performed on them in the following ways: -

i) AuBUO) i) AuB)UC iii) AnBuUO
iv) ANnB)NC v AUBNC) vi) ANC)uBNC)
vii) (AUB)NC viii) (A N B) UC. ix) AUC)N@BUQC

LetA=1{l,2,3},B={2,3,4,5) and C= {3,4,5,6,7,8}
y.’c find sets (i) to (iii) for the three sets (Find the remaining sets yourselves).

i) BUC ={234.5678}, AUBUC) ={12345,67.8}
i) AUB ={1,2,3.4,5), (AUB) UC ={1,234,5,6.8)
iii) BN C ={345}, _ ANBNC) ={3)

2.5 Properties of Union and Intersection

We now state the fundamental properties of union and intersection of two or .
three sets. Formal proofs of the last four are also being given.
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Properties: :
i) AUB=BUA (Commutative property of Union)
i) ANB=BnNnA (Commutative property of Intersection)
i) AUB U0 = (AUB) LC (Associative property of Union)

iv) AnBNnC) = (AnB)NnC (Associative property of Intersection).

vi) ANn(BUO

AU(BNO) (Au B) N (AU C) (Distributivity of Union over intersection)

(A N B)U (A n C)(Distributivity of intersection over Union)

I

vii) (AUB) = A'NnB '
vug) (AN BY = A’ uB]DeMorgansLaws

Proofs of De Morgan’s laws and distributive laws:

i)

(AU B) =A'NnB’
Letxe (AuB)
= x¢ AUB

= x¢ AandA¢ B
= xe€ A'andxe B’

= x€ANnB 1)
But x is an arbitrary member of (AU B)’ ' ;
Therefore, (1) means that (AUB) < A'n B’ (2)

Now suppose thaty € A'n B’
= ye A andye B’

= Yy&€A andy ¢ B

= YyY€AUB

= y e (AuB)

Thus A'n B" c(AUB)’ : 3)

ii)

i)

From (2) and (3) we conclude that
(AuB) = AN B
(AnB) =A"UB’
It may be proved similarly or deducted from (i) by complementation
AVUBNC) = (AUB)N(AUO
Letxe AU (BN Q)
= x€Aorxe BnC
= Ifxe Aitmustbelongto AUB and xe AUC :
= xe€(AUB)N(AUC) ‘ . . (1)
Alsoifxe BN C,thenxe Bandxe C. i :
= x€ AuBandxe AUC
= xe(AuB)IMAUVO) : :
"ThusAU(BNC)c(AUB)N(AUC) : 2)



Chapter. 2: Sets, Functions and Groups _I

Conversely, suppose that
ye AUB) N (AL ()
There are two cases to consider: -
yEAYyEA
In the firstcaseye A U (BN O)
If y& A, it must belong to B as well as C
ie,ye (BNQC)
~yeEAU (BNO
So in either case
ye AUBIN(AUC)=ye AU (BN (O)
thus AUB)N(AVCO)cAU (BN O) 3)
From (2) and (3) it follows that
AUBNO=AUB)Nn(AVUO)
iv) ANn(BulO) = ANBUMANCO)
It may be proved similarly or deducted from (iii) by complementation

Verification of the properties:
Example 1: Let A ={1,2,3},B={2,3,4,5}and C= {3,4,5,6,7,8}

) AUB={123} U {2345} ° BUA={2345}U{123)
- ={1,2345)  ={23451)
ZAOUB=BUA|
i) AnB={123}n(2345) BnA={2345) N {123}

= {23} = {23}

(iii) and (iv) Verify yourselves.

V) AUBNO) = {123}u ({2,345} N{3.4.56,7.8)

{1,2,3}u {3,4,5}

{1,2,3,4,5} : (€))
AUB) NAUC) = ({1,23}U{2,34,5)n({1,2,3}U{3,4,56,7.8})
{1,2,3,4,5} N {1,2,3,4,56;7.8}

{1.2,3,4,5} )

I

i

From()and (2), AU BnO=AVBNAVC)

vi) Verity yourselves.
vii) Let the universal set be U = { 1,2,3,4,5,6,7,8,9,10}
AUB ={1.23}U{2,345}={12345}
_ (AUB)'={6,7,89,10} [y = 5
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A'=U-A=(456789.10)
B'=U-B = {1,6,7,8,9,10}
A’ B = (45,678.9,10)1{1,6,7.89,10)
= (67,89.10)
Fom(l)and2), | (AUBY=A'"B"

viii) Verify yourselves.

Verification of the properties with the help of Venn diagrams.

)

i) and (ii): Verification is very
simple, therefore; do it yourselves. U jf’ﬂ I’
iil): In fig. (1) set A is represented by A
vertically lined region and BUC is

T1\
o

-
| LL>

represented by horizontally lined
region. The set AU (BUC) is \ 7

represented by the region which is =
lined either in one or both ways.

H

All
BuUC

=V#
AU(BL‘)C)
=V

Fig. (1)
In figure(2) AUB is represented by
horizontally lined region and C by Y
vertically lined region. (AU B)UC is = :
represented by the region which is s
lined in either one or both ways. @_ﬁ
Fig. (2)
From fig (1) and (2) we can see that :
AU(BUC)=(AUB)UC Y
(v) In fig (3) doubly lined region
represents. : 5 =}
AN(BNC) B SEHE ¢
|V

AUB=
c |l

(AuB)LUC
= ||| v #

A=
BncCl|l

ANn(BNC)
HE




In fig (4) doubly lined region represents
(AnB)NC.

Since in fig (3) and (4) these regions are
the same therefore,

AN(BNC)=(AnB)NC.

W) In figz. 5 AVUMBNC) is
represented by the region which is lined
horizontally or vertically or both ways.

In fig 6) (AUB)N(AUC) is
represented by the doubly lined region.
Since the two region in fig (5) and (6) are
the same, therefore.

AUBNC)=(AUB) N(AUC

(vi) Verify yourselves.
(vii) In fig (7) (A U B) is represented
by vertically lined region.
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U

AnNnB=
c |l
(AnB)NnC

AUB=
Avc
(AuB) N (AUC)
HE

AUB=
AuBY|l

Fig. (7)
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In fig. (8) doubly lined region represents. I
A'NnB. = in e
The two regions in fig (7). And (8) are the AT = YT
same, therefore, (AU B) = A" N B’ { / = B |l
‘ 1]/—8——4; Amer
11 : m
Fig. (8)
(viii) Verify yourselves.
' above Venn dlagmms only overlappmg sets have been

d. ;Ymﬁcatlon in other cases can also be effected similarly.

it il

TR A e e o

~Exercise 2.3
S Venfy the commutauve propemes of union and intersection for the following
pairs of sets: -
i) A={12345}, B={4,638,10} i) N,Z

i) A={xlxe RAx>0}), B=7R.

2 Verify the properties for the sets A,B and C given below: -

i)  Associativity of Union ii) Associativity of intersection.
iii) Distributivity of Union over intersection.

iv). Distributivity of intersection over union.

a) A={1,234), B={345678}, C={5679,10)

b) A=0, B = {0}, C={0,1,2}

©. NZQ-
3. Verify De Morgan’s Laws for the following sets:

U={123,....,20}, A={246,....,20}and B={135, ....,19}).
4. Let U= The set of the English alphabet

A={xlxisavowel}, B ={ y|yis a consonant},

Verify De Morgan’s Laws for these sets.

5. With the help of Venn diagrams, verify the two distributive properties in the
following cases w.r.t union and mtersectlon
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i) AC B, An C= @ and B and C are overlapping.
ii) A and B are overlapping, B and C are overlapping but A and C are disjoint.
Taking any set, say A = {1,2,3,4,5} verify the following: -

i) AudP=A i) AUA=A i) ANA=A

If U={1,2,3,4,5,....,20} and A= {135, ...., 19}, verify the following: -

i) AUVA'=U i) AnNU=A iii) ANA" =

From suitable properties of union and intersection deduce the following results:
i) ANn(AuUB)=AU(ANB) il) AUMANB)=AN(AUB).

Using venn diagrams, verify the following results.
i) AnB' =A iff AnB=® ii) (A-B) UB=AUB.
iii) A-B)NnB=@ iv) AUB=AU (A" N B).

In daily life we often draw general conclusions from a limited number of

observations or experiences. A person gets penicillin injection once or twice and
experiences reaction soon afterwards. He generalises that he is allergic to penicillin.
We generally form opinions about others on the basis of a few contacts only. This
way of drawing conclusions is called induction.

Inductive reasoning is useful in natural sciences where we have to depend upon

repeated experiments or observations. In fact greater part of our knowledge is based
on induction.

On many occasions we have to adopt the opposite course. We have to draw

conclusions from accepted or well-known facts. We often consult lawyers or doctors
on the basis of their good reputation. This way of reasoning i.e., drawing conclusions
from premises believed to be true, is called deduction. One usual example of
deduction is: All men are mortal. We are men. Therefore, we are also mortal.

Deduction is much used in higher mathematics. In teaching elementary

mathematics we generally resort to the inductive method. For instance the following
sequences can be continued, inductively, to as many terms as we like:

i) 2,4.6,... i) 14.9,.. TN 3=l 2 et

1§ Lnel R sy !

iv) 1,4,7,... V) '-3—,5,3—---- vi) E,m,mfu-
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As already remarked, in higher mathematics we use the deductive method. To

start with we accept a few statements (called postulates) as true without proof and
draw as many conclusions from them as possible.

Basic principles of deductive logic were laid down by Greek philosopher,
Aristotle. The illustrious mathematician Euelid used the deductive method while
writing his 13 books of geometry, called Elements. Toward the end of the 17th
century the eminent German mathematician, Leibniz, symbolized deduction . Due to
this device deductive method became far more useful and easier to apply.

2.6.1 -Aristotelian and non-Aristotelian logics

For reasoning we have to use propositions. A daclarative statement which may
be true or false but not both is called a proposition. According to Aristotle there could
be only two possibilities — a proposition could be either true or false and there could
not be any third possibility. This is correct so far as mathematics and other exact
sciences are concerned. For instance, the statement a = b can be either true or false.
Similarly, any physical or chemical theory can be either true or false. However, in
statistical or social sciences it is sometimes not possible to divide all statements into
_ two mutually exclusive classes. Some statements may be, for instance, undecided.

Deductive logic in which every statement is regarded as true or false and there is
no other possibility, is called Aristotlian Logic. Logic in which there is scope for a
third or fourth possibility is called non-Aristotelian. We shall be concerned at this
stage with Aristotelian logic only.
2.6.2 Symbolic logic .

For the sake of brevity proposmons will be denoted by the letters p,getc. We
give a brief list of the other symbols which will be used.

Symbol How to be read Symbolic expression How to be read
' _ : Not p,
zot P negation of p
N and PAg pand g
v or Pvq porq
; If pthen g
- If . . . then, implies Pp—q 7
p implies g
b Is equi\{alelft to, ey p if and only if g
if and only if p is equivalent to ¢

_
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Explanation of the use of the Symbols:

1) Negation: If p is any proposition its negation is denoted by p|~P
~p, read ‘not p’. It follows from this definition that if p is T*|=F
true, ~p is false and if p is false, ~p is true. The adjoining
table, called truth table, gives the possible truth-values of p FIT
and ~p. Table (1)

2) Conjunction of two statements p and g is denoted

symbolically as p A¢q (p and ¢g). A conjunction is P q |pagq
considered to be true only if both its components are T T T
true. So the truth table of p A g is table (2).
: T F F
Example 1:
: ] _ : F T F
i) Lahore is the capital of the Punjab and
Quetta is the capital of Balochistan. _ F F F
i) 4<5A8<10 Table (2)
i) 4<5A8>10
iv) 2+2=3A6+6=10
Clearly conjunctions (i) and (ii) are true whereas (iii) and (iv) are false.
3)  Disjunctionof pand gisp org.Itis symbolically | p | 4 [ pvg
written pV q. The disjunction p Vv qis considered
to be true when at least one of the components p and T T T
g is true. It is false when both of them are false. T F T
. Table (3) is the truth table. F T T
Example 2: E . -
i) 10 is a positive integer or 0 is a rational number. Table (3)

Find truth value of this disjunction.
Solution: Since the first component is true, the disjunction is true.

ii) A triangle can have two right angles or Lahore is the capital of Sind.

' Solution: Both the components being false, the composite proposition is false.

2.7 Implication or conditional

A compound statement of the form if p then g, also written p implies g, is called -
a conditional or an implication. p is called the antecedent or hypothesis and ¢ is

called the consequent or the conclusion, :
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A conditional is regarded as false only when the antecedent is true and

consequent is false. In all other cases it is considered to be true. Its truth table is,
therefore, of the adjoining form. '

Entries in the first two rows are quite in p q |'P>4
_consonance with common sense but the entries of the T T T
last two rows seem to be against common sense.
According to the third row the conditional T F F
If p then g F T T
is true when p is false and g is true and the compound F F T
proposition is true (according to the fourth row of the Table (4)

table) even when both its components are false. We attempt to clear the position with
the help of an example. Consider the conditional

If a person A lives at Lahore, then he lives in Pakistan.

If the antecedent is false i.e., A does not live in Lahore, all the same he may be
living in Pakistan. We have no reason to say that he does not live in Pakistan

We cannot, therefore, say that the conditional is false. So we must regard it as true. It
must be remembered that we are discussing a problem of Aristotlian logic in which
every proposition must be either true or false and there is no third possibility. In the
case under discussion there being no reason to regard the proposition as false, it has to
be regarded as true. Similarly, when both the antecedent and consequent of the
conditional under consideration are false, there is no justification for quarrelling with
the proposition. Consider another example.

A certain player, Z, claims that if he is appointed captain, the team will win the
tournament. There are four possibilities: -

i) Z is appointed captain and the team wins the tournament. Z’s claim is true.
Z is appointed captain but the team loses the tournament. Z’s claim is falsified.

1ii)  Zis not appointed captain but the teain all the same wins the tournament.
There is no reason to falsify Z’s claim.

Z is not appointed captain and.'the team loses the tournament. Evidently,
blame cannot be put on Z. )
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It is worth noticing that emphasis is on the conjunction if occurring in the
beginning of the ancedent of the conditional. If condition stated in the antecedent is

not satisfied we should regard the proposition as true without caring whether the
consequent is true or false.

For another view of the matter we revert to the example about a Lahorite:
‘If a person A lives at Lahore, then he lives in Pakistan’.

p: A person A lives at Lahore.

g: He lives in Pakistan

. When we say that this proposition is true we mean that in this case it is not
possible that ‘A lives at Lahore’ is true and that ‘A does not live in Pakistan’ is also
true, thatis p — g and ~ (pA ~ g) are both simultaneously true. Now the truth table

of ~(pA ~ q) is as shown below:

p q ~q pPA~q | ~(pA~q)

T T F F T

T F T T F '

F T F F T

F F T F T
Table (5)

Looking at the last column of this table we find that truth values of the
compound proposition ~(pA ~gq)are the same as those adopted by us for the
conditional p — g . This shows that the two propositions p — g and ~ (pA ~ g) are
| logically equivalent.- Therefore, the truth values adopted by us for the conditional are
correct.

2.7.1 Biconditional : p & g

The proposition p—gA g —> pis shortly written p ¢>gand is called the
biconditional or equivalence. It is read p iff ¢ (iff stands for “if and only if?)

We draw up its truth table. '
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p g Po4q|g-op|peg
I T T 1t it
T F F it F
E T T F F
F F 1t i T
Table (6) :
From the table it appears that p < g is true only when both p and g are true or

both p and g are false.
2.7.2 Conditionals related with a given conditional.
Let p — g be a given conditional. Then
| i) g — pis called the converse of p — g ;
i) ~ p =~ qis called the inverse of p — g ;
. ii‘i) ~ g —~ p s called the contrapositive of p —.¢.

To compare the truth values of these new conditionals witli those of p — g we

draws up their joint table.
coftiii‘;::nal Converse Inverse Contrapositive

p q ~p | ~q p—q g—p ~D—~q =

T | S (B | E T s T 1L

NG|SR Badloir F T T -

‘F T T F T E F -
LN BEE | ST = F T T T =

Table (7)

~ From the table it appears that

i) Any conditional and its contrapositive are equivalent therefore any theorem

may be proved by proving its contrapositive.

i).  The converse and inverse are equivalent to each other.
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Example 3: Prove that in any universe the empty set @ is a subset of any set A.

First Proof: Let U be the universal set consider the conditional:

VieU,xe® 5 xe A ()

The antecedent of this conditional is false because no xe U , is a member of @.
Hence the conditional is true.
Second proof: (By contrapositive)
The contrapositive of conditional (1) is
Vxe U,xsEA—-)stD (2)
The consequent of this conditional is true. Therefore, the conditional is true.
Hence the result.

Example 4: Construct the truth table ol [(p — g A p—q)]

Solution: Desired truth table is given below: -

P g |P29| (p>gnAp [(.‘::i);
T 9L T it T
T F F F T
E T ar F T
F F T F T
Table (8)
2.7.3 Tautologies
i) A statement which is true for all the possible values of the variables involved

in it is called a tautology, for example, p — g <> (~ g =~ p)is a tautology.
(are already verified by a truth table). ;

ii) A statement which is always false is called an absurdity or a contradiction
eg, pP2>=P L
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iii) A statement which can be true or false depending upon the truth values of _the
variables involved in it is called a contingency e.g., (p 2> ¢)A(pVvg) 1s a
contingency.

(You can verify it by constructing its truth table).

2.7.4 Quantifiers '

The words or symbols which convey the idea of quantity or number are called
quantifiers. ‘
In mathematics two types of quantifiers are generally used.
1) Universal quantifier meaning for all
Symbol used : V

T . P —

i) Existential quantifier: There exist (some or few, at least one) symbol used: 3
Example 5

i) - Vxe A.p(x)is true.
(To be read : For all x belonging to A the statement p(x)is true).

i) dxe A> p(x)is true.
e (To be read : eexi ts

such that statement Pg_x_) is_ true) e

) . M o i
Y gl i

1. Write the converse, inverse and contrapositive of the following conditionals: -
i) ~p—ogq i) g-p i) ~po>~g iv) ~g—~p
2. Construct truth tables for the following statements: -
) (p=2~pv(pp—q i) (pa~p)—9q
i) ~(p—9q) & (pr~q)
3. Show that each of the following statements is a tautology: -

) (pag—»p i) p3(pva
i) ~(p—2g)—op iv) ~ga(p—q)—>~p
4. Determine whether each of the following is a tautology, a contingency or an
. absurdity; - =
) pa~p i) p>(@—>Pp) iii) gv(~qvp)

5. Provethat pv (~pA~q)V(pAg)=pV (~pA~9)
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2.8 Truth Sets, A link between Set Theory and Logic.

Logical propositions p,getc., are formulae expressed in terms of some

variables. For the sake of simplicity and convenience we may assume that they are all
expressed in terms of a single variable x where x is a real variable. Thus
p = p(x) where, x€ 7R.. All those values of x which make the formula p(x) true form_

a set, say P. Then P is the truth set of p. Similarly, the truth set, O, of g may be
defined. We can extend this notion and apply it in other cases.

i) Truth set of ~p: Truth set of ~p will evidently consist of those values of the
' variable for which p is false i.e., they will be members of P’, the complement of P.

ii) p v q: Truth set of pVv g= p(x)Vv q(x)consists of those values of the variable
for which p(x)in true or g(x) is true or both p(x)and g(x) are true.

- Therefore, truth set of p v g will be:
PuUQ = {x|p(x) is true or g(x) is true}

iii) p A ¢g: Truth set of p(x)Ag(x) will consist of those values of the variable
for which both p(x)and g(x) are true. Evidently truth set of

pAg=PNQ
= {1 p(x) is true A g(x) is true}

iv) p — g: We know that p — gis equivalent to ~ pv g therefore truth set of
p—qwillbe P’UQ

V) p < g: We know that p <> gmeans that p and g are simultaneously true or
false. Therefore, in this case truth sets of p and g will be the same i.e.,

[al
0T ST st

Example 1:  Give logical proofs of the following theorems: -

(A, B and C are any sets)
i) (AUB)'=A"NnB’ ii) Ar"\(B_UC)=(AﬁB)U(Ar‘\C}
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Solution: i) The corresponding formula of logic is
~(pVvq)=~pAr~q (1
‘We construct truth table of the two sides.

plagl|l~p|~| PVa | ~(pvg) | ~Pr~q
miETHISER (P EE T BE F
TEE s T F F
i S T T F 1" F F
B B sl T F 1 T

e — " i 1 o — e |
The last two columns of the table establish the equality of the two sides of eq.(1)
(11), Logical form ol the theorem 1s
pA(gvn=(pArq@v(pnar)

We construct the table for the two sides of this equation.

JREIDISat ® 6 7
P|g|r|49vYT | pa(@vr) | PAG | PAT | (pPAg)V(pAT)
SIS TR T D T i T

T T N RA | T T T F

| B (BT (s T T F T T
T|F|F| F F F F F

2 [ ] R F F F F
A F F R F
E(EERT L T F F F F
F|F|F| F F . F F F

Comparison of the entries of columns@ and® is sufficient to establish the desired
result. ' ' '
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Exercnse 2 5 s

Convert the followmg theoremis to loglcal form and prove them by constructmg
truth tables: -

1. AnB)=A"UB’ 2. (AUB)UC=AU(BUC)
3.  ANB)NC=An(BNC) 4. AuBNnC)=(AuB)Nn(AUC)

2.9 Relations

S T e T S

In every-day use relation means an abstract type of connection between two
persons or objects , for instance, (Teacher, Pupil), (Mother, Son), (Husband, Wife),
(Brother, Sister), (Friend, Friend), (House, Owner). In mathematics also some
operations determine relationship between two numbers, for example: -

>:(5,4); square: (25, 9); Square root: (2,4); Equal: (2 X 2, 4).

Technically a relation is a set of ordered pairs whose elements are ordered
pairs of related numbers or objects. The relationship between the components of an
ordered pair may or may not be mentioned.

1) Let A and B be two non-empty sets, then any subset of the Cartesian
product A X B is called a binary relation, or simply a relation,
from A to B. Ordinarily a relation will be denoted by the letter .

ii) The set of the first elements of the ordered pairs forming a relation
is called its domain.

iii)  The set of the second elements of the ordered pairs forming a
relation is called its range.

1v) If A is a non-empty set, any subset of AXA is called a relation in
( A. Some authors call it a relation on A.

Example 1: Let ¢;,c;,c3 be three children and m , m, be two men such that father

of both ¢{,c, is m, and father of c; is m,. Find the relation { (child, father))

Solution: C = Sat‘ofchildren'= {c1,¢5,¢3} and F=setof fathers = {m,,m }
C xXF ={(¢;,m)),(c,,m,), (c,,m,), (¢c,,m,),(cy,m,),(Cy,m,)}

r = set of ordered pairs (child, father).
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= {(¢,, my),(c,, m)),(cy, m,)}

Dom r = {c,, ¢,,¢3},Ran r ={m,, m,}

The relation is shown diagrammatically in fig. (2.29).

Fig (2.29)
Example 2:‘ Let A= {1,2,3}. Determine the relation r such that xry iff x < y.

Solution: Ax A ={(1,1),(1,2),(1,3),(2,)), (2,2),(2,3),(3,1),(3,2),(3,3)}

Clearly, required relation is:
r={(1,2),(13),(23)}, Dom r={1,2},Ran r = {23}
Example 3: Let A = 7R, the set of all real numbers.
Determine the relation rsuch thatxry iffy=x + 1
Solution: AxA=TR xR -
r={(x,y)|_y=x+1}
When x=0, y=1
x==1,y=0, i |
ris represented by the line passing through the points (0,1), (=1.0). ‘
Some more points belonging to r are: . / -
{12, @3, G4, (2D, (3-D.(4-3} - & Dty
Clearly, Dom =78 and Ranr = 7R

1.0

/ o

Fig (2.30)|

A
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2.10 Functions

" A very important special type of relation is a function defined as below: -
Let A and B be two non-empty sets such that:
i) fis a relation from A to B that is, f is a subset of AXB
i) Domf=A _
iii) First element of no two pairs of f are equal, then f is said to be a
function from A to B.

The function f'is also written as:

f:A>B

which is read: fis a function from A t0B.

If (x, y) in an element of f when regarded as a set of ordered pairs,

we write y = f(x). yis called the value of f for x or image of x under f.

In example 1 discussed above :

i) risasubset of CXF;

ii) Domr={c,;c,,c;}=C;

iii) First elements of no two related pairs of r are the same.

Therefore, r in a function from C to F.

In Example 2 discussed above

i) risasubsetof AXA;

ii) Domr#A

Therefore, the relation in this case is not a function.

In example 3 discussed above

i)  ris asubset of R.

ii) Domr= /

iii) Clearly first elements of no two ordered pairs of  can be equal. Therefore,

in this case ris a function.

i) Into Function: If a function f: A—B is
such that Ran fc B i.e., Ran f# B, then fis
said to be a function from A into B. In fig-(1)
f is clearly a function. But Ran f # B.
Therefore, fis a function from A into B.

£ ={12.64.6.:6)}
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ii)

iii)

iv)

Onto (Surjective) function: If a function
f: A —B is such that Ran f = B i.e., every
element of B is the image of some elements of
A, then f is called an onto function or a

surjective function.

(1-1) and into (Injective) function: If a
function f from A into B is such that second
elements of no two of its ordered pairs are
equal, then it is called an injective (1 — 1, and
into) function. The function shown in fig (3)
is such a function. |

(1 — 1) and Onto function (bijective
function). If fis a function from A onto B
such that second elements of no two of its
ordered pairs are the same, then fis said to
be (1 — 1) function from A onto B.

Such a function is also called a (1-1)
correspondence between A and B. Itis

A B
//-“-.. o :
f/ Ge» \\ .«{{'“'*—x' .\\‘
l G v—"’i/-’,-’ _._.Il T,

\ '_‘____,'I_-—‘-*-"*_- \
/
N Fig (2) s

. f= {(Cl » M, ), (¢c,,m,),(c;,m, )}

A B

J 1o —————» -— —

| 2-—-—-——--»: ah
Fig (3)

f={,a),2,b)}

A B

i b>;<: -“-. et

ll‘._ c o-'-"‘:"d_.. Sl ".‘H‘ =
N_/ P

f ={@2).6,%),(c, )}

also called a bijective function. Fig(4) shows a (1-1) correspondence between

the sets A and B.

(a, ), (b, x) and (c, y) are the pairs of corresponding elements i.e., in this case
f={(a, 2), (b, x), (¢, y)} which is a bijective function or (1-1) correspondence

between the sets A and B.

Set — Builder Notation for a function: We know that sub-builder notation is more
suitable for infinite sets. So is the case in respect of a function comprising infinite
number of ordered pairs. Consider for instance, the function

f={11),2.4),3,9.416), ...}

Domf={1,2,3,4, ...}.and Ranf = {1,4,9, 16, ...}
_Thisfunctiopmaybewritten as: f={(xyly =F,xe N}
For the sake of brevity this function may be written as:
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f= function defined by the equation y = X%, x € N.

Or, to be still more brief: The function b ,X€E N.

In algebra and Calculus the domain of most functions is 7. and if evident from
the context it is, generally, omitted.
2.10.1 Linear and Quadratic Functions

The function { (x, y) | y=m x + c} is called a linear function, because its graph
(geometric representation) is a straight line. Detailed study of a straight line will be
undertaken in the next class. For the present it is sufficient to know that an equation
of the form ' _

y=mx+corax+ by + c=0represents a straight line . This can be easily
verified by drawing graphs of a few linear equations with numerical coefficients. The

function { (x, y)ly=a x2 + b x + c} is called a quadratic function because it is
defined by a quadratic (second degree) equation in x, y.

Example 4: Give rough sketch of the functions
s i 1
) {(xy)! 3x+y=2} 11) {(I,}’)I)’=§I2}

Solution:
i) The equation defining the function is 3x + y =2
= y=—-3x+2
We know that this equation, being linear, : )y
represents a straight line. Therefore, for drawing
its sketch or graph only two of its points are
sufficient.

When =0 yi=tD 8¢

Db-/

(0,2)

When y=0,x= -§~ = 0.6 nearly. So two ' :
(.6,0)

r 3

points on the line are A (0, 2) and B = (0.6, 0).

> X
- 0| \B
Joining A and B and producing AB in both Fig (1) - \ :
directions, we obtain the line AB i.e., graph of the '
given function. i[S
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t Y
i) The equation defining the functionis y = % XA 1Y
Corresponding to the values 0, + 1, +2, +3 ... 43) !“sn
of x, values of y are 0, .5, 2, 4.5, ... : /
We plot the points (0, 0), (+ 1, .5), (+ 2, 2), ‘[\1 ’
( + 3, 4.5), ... Joining them by means of a smooth  * o o
curve and extending it upwards we get the required _ 1
graph. We notice that: Fig. @ |
1) The entire graph lies above the x-axis.
ii) Two equal and opposite values of x correSpond to every value of y (but
not vice versa).
iii) As x increases (numerically) y increases and there is no end to their

increase. Thus the graph goes infinitely upwards. Such a curve is

called a parabola. The students will learn more about it in the next
class.

2.11 Inverse of a function

If a relation or a function is given in.the tabular form i.e., as a set of ordered
pairs, its inverse is obtained by interchanging the components of each ordered pair.
The inverse of r and fare denoted r~! and f~! respectively.

If 7 or f are given in set-builder notation the inverse of each is obtained by

interchanging x and y in the defining equation. The inverse of a function may or may
not be a function.

The inverse of the linear function . |

{(x,y)| y=mx+c} is {(x,y)lx=my+c} which is also a linear function.
Briefly, we may say that the inverse of a line is a line.

The line y = x is clearly self-inverse. The function defined by this equation i.e.,

the function {(x,y) | y=x} is called the identity function.
Example 6: Find the inverse of

i)  {1,1},2,4),3,9),@,16),..xeZ"}, i
i) {0y)ly=2x+3,xe R} i) {GIF+y=d).
Tell which of these are functions.



Solution:
1) The inverse is:
{(2,1),(4,2),9,3),(16,4) ...}.
~ This is also a function.
Note. Remember that the equauon
: =Jx,x20 "

. deﬁnes a functmn but the. equano‘_ :{ _— =00

The function defined by the equation
y=+x, x20
is called the square root function.
The equation .y2 =x=>y=% Jx
Therefore, the equation y* = x (x = 0) ma)‘r‘; be regarded as defining the union of
the functions defined by :

y= Jx,x2 0af1dy= —\/;,xz 0.

ii) The given function is a linear function. Its inverse is:

{(x, y)[ x=2y +3}

which is also a linear function.

Points (0, 3), ( —1.5,0) lie on the gwen line and points (3 0), (0, -1 5) lie on its
inverse. (Draw the graphs yourselves).

The lines /, i’are symmetric with respect to the line y = x. This quality of
symmetry is true not only about a linear n function and its inverse but is alsd true
about any function of a higher degree and its inverse (why?) .

1. For A = {1,2,3,4}, find the following relations in A. State the domain and
range of each relation. Also draw the graph of each.
i) {(xy)ly=x} i) {(xy) 1 y+x=5}
iii) {(x,) |x+y<5) iv) {(xy) lx+y>5}
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2. Repeat Q-1 when A =7R , the set of real numbers. Which of the real lines are
functions.

3. Which of the following diagrams represent functions and of which type?

a

1 » b

2 ) # { c

3 2 \ d

Fig(1)

fl /.\ > a
[ : > b
\ > c

-~

3 g
¥ \/ Fig(3)

4. Find the inverse of each of the following relations. Tell whether each relation
and its inverse is a function or not: -

i) {21, 3.2), 43), 5:4), 65} i) {13), (25), 3,7), 49), (5.11)}
i {x v lv=2x+3.xe R } iv) {(.r. V) |y =dax, x > O}

V) @ y) 122+ 32 =9, 1x1<31yi<3}

2.12 Binary Operations

In lower classes we have been studying different number systems investigating
the properties of the operations performed on each system. Now we adopt the
opposite course. We now study certain operations which may be useful in various
particular cases.

An operation which when performed on a single number yields another number
of the same or a different system is called a unary operation.

Examples of Unary operations are negation of a given number, extraction of
square roots or cube roots of a number, squaring a number or raising it to a higher
power.

We now consider binary operation, of much greater importance, operation
which requires two numbers. We start by giving a formal definition of such an
operation.

_
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A binary operation denoted as 3 (read as star) on a non-empty set G is a
function which associates with each ordered pair (g, b), of elements of G, a unique
element, denoted as a % b of G.

In other words, a binary operation on a set G is a function from the set G x G to
the set G. For convenience we often omit the word binary before operation.

Also in place of saying ¢ is an operation on G, we shall say G is closed with
respect to %

Example 1: Ordinary addition, multiplication are operations on N. i.e., N is closed
with respect to ordinary addition and multiplication because
Ya,be N,a+be NaabeN

(V' stands for "forall" and A stands for "and" )

Example 2:  Ordinary addition and multiplication are operations on E, the set of all
even natural numbers. It is worth noting that addition is not an operation on O, the set
of old natural numbers.

Example 3:  With obvious modification of the meanings of the symbols, let E be
any even natural number and O be any odd natural number, then

E®E = E (Sum of two even numbers is an even number).

E®O0=0
and O®O=E

These results can be beautifully shown in the form of a table given above:
This shows that the set {E, O} is closed under (ordmary) addition.
The table may be read (horizontally).

@|E|O
E|E|O
O|O0|E|

EQ®E =E E+O =0;

0®O0 =E, O+E =0
Example4: The set {1,—1, i, —i}where ®
i=+/—1 is closed w.r.t multiplication (but 1
not w. r. t addition). This can be verified | =l
from the adjoining table. ' i

—i
Note: . The elements of the set of this example are the fourthira

Example 5: It can be easily verified that ordinary | ® 1 o | o®-
multiplication (but not addition) is an operation on [ 1 @ 2
the set {1,,0”} where @ =1. The adjoining table : -
may be used for the verification of this fact. a) S (O :

" (@ is pronounced omega) ~0° | @ 1 | o
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Operations on Residue Classes Modulo n.
Three consecutive natural numbers may be written in the form:

3n, 3n+1, 3n+2 When divided by 3 they give remainders 0, 1, 2
respectively.

Any other number, when divided by 3, will leave one of the above numbers as
the reminder. On account of their special importance (in theory of numbers) the
remainders like the above are called residue classes Modulo 3. Similarly, we can
define Residue classes Modulo 5 etc. An interesting fact about residue classes is
that that ordinary addition and multiplication are operations on such a class.

Example 6: Give the table for addition of elements of the set of residue classes
modulo 5.

Solution: Clearly {0,1,2,3,4}is the set of residuesthatwe | @ [ o | 1 | 2 | 3 | 4

have to consider. We add pairs of elements as in ordinary ololi1l213]4

addition except that when the sum equals or exceeds 5,

we divide it out by 5 and insert the remainderonlyinthe | 1 | 1 (2 |3 |4 | O

table. Thus 4+3=7but in place of 7 we insert 21203 lalol1

2(=7-15) in the table and in place if 2+3 =35, we insert

0=5-5). SRR D R OS ] 12
A E4RIEOR|S1N] 20| -3

Example 7: Give the table for adition of elemnts of the set of residue classes modulo 4.

Solution: Clearly {0,1,2,3}is the set of residues that we | @
have to consider. We add pairs of elements'as in ordinary | 0
addition except that when the sum equals or exceeds 4, we | 1
divide it out by 4 and insert the remainder only in the table. | 2
Thus 3+2=5 but in place of 5 we insert 1(=5—4)in the | 3
table and in place of 1 +3=4, we insert 0(=4—4).

Example 8: Give the table for multiplication of elemnts of the set of residue classes
modulo4.

Solution: Clearly {0,1,2,3}is the set of residues that we
have to consider. We multiply pairs of elements as in
ordinary multiplcation except that when the product equals
or exceeds 4, we divide it out by 4 and insert the remainder
only in the table. Thus 3x2=6 but in place of 6 we insert

2(= 6—4)in the table and in place of 2x2=4, we insert
V=4-4). :

W —=o(o

O |W B ==
— (O Wi
N = O|W]|Ww

win|—=o|®
=l =1=l=]1=]

W= O

NOINO|N
WO |
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Example 9: Give the table for multiplication of elements of the set of residue
classes module 8.

Solution: Table is given below:

® | 0 1 28 S 4 |5 6 | 7
05| O R ORS [ IOM| WO 0N SO M| SO0
1 0 1 2R3 4 | 5 610 |
25| FR02 (SR80 N4 | SEG 1N 0/ | RS2 5 | R4 | O
3 A0S 3 6 1 4 | 7 20805
4571088 | 4R MORT| B4 | MO TSI SE4 | R 018 [ 14
5 DSBS 2 |71 4 1 61| 3
(o I Y s s )2 T [T S
T NONE | 957, 6|5 4 | 3 2 1

 Note: For performing multiplication of residue classes 0 is generally omitted.

2.12.1 Properties of Binary Operations

Let S be a non-empty set and 3 a binary operations on it. Then 3 may possess
one or more of the following properties: -

i) Commutativity: x is said to be commutative if
axpb=b*aVabeS

ii) Associativity: x is said to be associative on S if
axbxc)=(@xb)xcV =a,bceS.

iii) Existence of an identity element: An element e € S is called an identity
element w.r.t x if
axe=exa=a, Vaes.

| iv) Existence of inverse of each element: For any element a€ S ,3 an element
a’ € S such that :

ax a =a xa=e (the identity element)




Example 10 Let A={1,2 3,....,20} the set of ﬁrst 20 natural numbers.

Ordinary addition is not a binary operation on A because the set is not closed w.r. £
addition. For instance, 10+25=35¢ A

Example 11: Addition and multiplication are commutative and associative
operations on the sets
N,Z,0,R (usual notation),
eg 4x5=5x4, 2+(@B+5)=(2+3)+5 etc.
Example 12: Verify by a few examples that subtraction is not a binary operation
* on N but it is an operation on Z, the set of integers.
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Complete the table, indicating by a tick
satisfied by the specified set of numbers.

Set of numbers _
Natural | Whole | Integers | Rational | Reals
Property |
@
Closure
®
(&3]
Associative
®
&3]
Identity
®
)
Inverse -
P ®
@
Commutative —
‘ L®

2. What are the field axioms? In what respect does the field of real numbers differ
from that of complex numbers?

3. Show that the adjoining table is that of

3 10 ORISR DS SR |4
multiplication of the elements of the set of
residue classes modulo 5. 0({0|0]0|0)0
1{of1({2|3]4
2. |1 0%25 [F 4Rt e
3(013|114]2
4 |01 4|32 |1

N Prepare a table of addition of the elements of the set of residue classes modulo 4

5.  Which of the following binary operations shown in _tables (a) and (b) is
commutative? :
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¥

x|lal|b|c x|la|b|lc|d
a c|b alalc|b

b c|b|a blc|d|b|a
chiiculvd: [Wbil e clb|b|a
dla|a|b|b 'd dlalcld
(a) ' (b)

6. Supply the rmssmg elements of the thirdrowofthe | % | a | b | ¢ | d
given table so that the operanon % may be| a | a | b | ¢ a’_J
a_ssocmtwc. b|b|a|c|d

= N
dR|BAR N c R Ten | d

7. What operation is represented by the adjoining SR IRORISIR| 251" 3
table? Name the identity element of the o= [T 243
relevant set, if it exists. Is the operation B (530 [0
associative? Find the inverses of 0,1,2,3, if 5l ' o
they exist. sEoE T2

2.13 Groups

We have considered, at some length, binary operations and their properties. We
now use our knowledge to classify sets according to the propemcs of operations
defined on them.

First we state a few preliminary definitions which will culminate in the
definition of a group.

Groupoid: A groupoid is a non-empty set on which a binary operation 3 is defined.

Some authors call the system (S. 3 ) a groupoid. But, for the sake of brevity

and convenience we shall call 5 a groupoid, it being understood that an operation ><
is defined on it.

In other words, a closed set with respect to an operation 3 is called a groupoid

‘ S ' i
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Example 1: The set {E, O} where E is any even number and O is any odd number, (as
already seen) are closed w.r.t. addition.

It is, therefore, a groupoid.

Example 2: The set of Natural numbers is not closed under operation of subtraction
€.g.

For 45eN,  45=-l¢N
Thus (N, -) is not a groupoid under subtraction.

Example 3: As seen earlier with the help of a table the set {1,—1,i,—i}, is closed W.L.L.
multiplication (but not w.r.t. addition). So it is also a groupoid w.r.t X.

Semi-group: A non-empty set S is semi-group if;
i) Itis closed with respect to an operation 3 and
ii) The operation 3 is associative.

As is obvious from its very name, a semi-group satisfies half of the conditions
required for a group.

Example 4: The set of natural numbers, N, together with the operation of addition is
a semi-group. N is clearly closed w.r.t. addition (+).

Also VY a,b,ce N, a+(b+c)=(a+b)+c

Therefore, both the conditions for a semi-group are satisfied.

Non-commutative or non-abelian set: A set 4 is non-commutative if commutative
law does not hold fir it.

For example a set A is non-commutative or non-abilian set under x when x is
defined as:

Vx,veExxy=x

Clearly x 3 v=xand y x x =y indicates that A is non-commutative or non-abilian
set.

Example 5: Consider Z. the set of integers together with the operation of
multiplication. Product of any two integers is an integer.
Also product of integers is associative because Va.b,ce Z a.(b.c)=(ab).c
Therefore, (Z,.) is a semi-group.

~ Example 6: Let P(S) be the power-set of § and let A.B.C. ... be the members of P.
Since union of any two subsets of § is a subset of S, therefore P is closed wnh
respectto U. Also the operation is assocmme
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L (e.g. AU(BUC)=(AUB)UC, which is true in general).

Therefore, (P(S),V)is a semi-group.
Similarly (P(S),Nn)is a semi-group.
Example 7:  Subtraction is non-commulative and non-associative on N.
Solution: For4, 5, 6, € N, we see that
4-5 =-1 and 5-4=1
Clearly ‘ 4-5#5-4
Thus subtraction is non-commutative on N.
Also 5—(4-1)=5-(3)=2 and (5-4)-1 =1-1=0
Clearly 5-(4-1) # (54)-1

Thus subtraction is non-associative on N.

Example 8: For a set A of distinct elements, the binary operation 3% on A defined by
xxy=x,Vx,ye A
is non commutative and assocaitve.

Solution: Cohsider

X% _\'I'=‘_x - and Y% X=y
Clearly XY # yxX
Thus ¢ is ﬁon-commutative onA.

Monoid: A semi-group having an identity is called a monoid i.e., a monoid is a set S;
i) which 1s closed w.r.t. some operation . ‘
ii) the operation 3 is associative and
iii) it has an identity.
Example 9: The power-set P(S)of a set S is a monoid w.r.t. the operation

Ubecause. as seen above, it is a semi-group and its identity is the empty-set @
becafise if A is any subset of S,




Chapter. 2: Sets, Functions and Groups

Example 10: The set of all non negative integersi.e., Z* U {0}

PUA=AVD = A

i) is clearly closed w.r.t. addition,
ii) addition is also associative, and

iii)  Ois the identity of the set.
(@a+0=0+a = a YaeZ'u{0})

. the glven set is a monoid w.r.t. addmon

Note It is easy to venfy that the gwe.n set 1s»c"""" ne ( tom
- well but nat w.r.t. subtractlon R f;._

Example 11: The set of natural numbers, N, w.r.t. ®
i) the product of any two natural numbers is a natural number;
ii) Product of natural numbers is also associative i.e.,
Ya,b,ce N a.(bc)=(a.b).c

iii) | € N is the identity of the set.
". N is a monoid w.r.t. multiplication.
Note: N is not a monoid w.r.t. addition because it has no identity w.r.t. addition.

Definition of Group: A monoid having inverse of each of its elements under % is

called a group under . That is a group under x is a set G (say) if
i) . Gisclosed w.r.t. some operation x; ‘
ii) The operation of x is associative;
iii) G has an identity element w.r.t. 3 and
iv).  Every element of G has an inverse in G w.r.t. .
If G satisfies the additional condition:

V) For every a.be G

axb=h xa
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then G is said tobe an Abelian” or commutative group under 3.

Example 12: The set N w.r.t. + _
Condition (i) colsure: satisfiedi.e.. Va be N a+be N
(ii) Associativity: satisfied i.e., '
Va,b,ce N,a+(b+c)=(a+b)+c

(iii)) and (iv) not satisfied i.e., neither identity nor inverse of any element
exists.

.~ N is only a semi-group. Neither monoid nor a group w.r.t. +.
Example 13: N w.rt ®
Condition: (i) Closure: satisfied
Va,be N, abe N
(i1) Associativity: satisfied
Ya,b,ce N, a.(lbc)=(ab)c
(ii1) Identity element, yes, 1 is the identity element

(iv) Inverse of any element of N does not exist in N, so N is a monoid but
. not a group under multiplication.

Example 14: Consider S = {0,1,2 } upon which operation @ has been performed as
shown in the following table. Show that S is an abelian group under @.

Solution:
1) Clearly S as shown under the operation is S i el | e
closed. 0|0 (|1]2
ii) The operation is associative e.g. ) W F 2 )
0+(14+2)=0+0=0 > 21011
O+D+2=1+2=0 etc.

-1ii) Identity element O exists.

* Named after brilliant l:lorwcgian mathematician, N.H. Abal (1802-29) who was killed in a duel at a
young age, probably by his political rivals.



iv) Inverses of all elements exist, for example

0+0=0, 1+2 =0, 2+1=0
= 0'=0 1'=2 27'=1

v) Also @ is clearly commutative e.g., 1+2=0=2+1

Hence the result.

Example 15: Consider the set S = {I,—1,i,—i}. Set up its multiplication table and
show that the set is an abelian group under multiplication

Solution: GO =100 =T =2
i)  Sisevidently closed w.r.t.®. T A | =
i1) Multiplication is also associative =0 O =
(Recall that multiplication of complex numbers is i 5 ' = P T 5T
associative)

iii) Identity element of S is 1. e S =

iv) Inverse of each element exists.
Each of 1 and -1 is self inverse.
i and —i are inverse of each other.

v) @ is also commutative as in the case of C, the set of complex numbers. Hence
given set is an Abelian group.

Example: Let G be the set of all 2x2 non-singular. real matrices, then under the
usual multiplication of matrices, G is a non-abelian group.

Condition (i) Closure: satisfied; i.e., product of any two 2 X 2 matrices is again a
matrix of order 2 X 2.

(ii) Associativity: satisfied
For any matrices A, B and C conformable for multiplication.
AX(BxC)=(AxXB)xC.
So, condition of associativity is satisfied for 2 X 2 matrices.

IR0
(1ii) [0 l:| 1S ani_dentity matrix.

(iv) As G contains non-singular matrices only so, it contains inverse of
each of its elements.

Chapter. 2: Sets, Functions and Groups



A Textbook of Algebra and Trigonometry

(v) We know that AB # BA in general. Particularly for G, AB # BA.

Thus G is a non-abilian or non-commutative gorup.

Finite and Infinite Gorup: A gorup G is said to be a finite group if it contains
finite number of elements. Otherwise G is an infinite gorup.

The given examples of groups are clearly distinguishable whether finite or infinite.

Cancellation laws: If a,b, c are elements of a group G, then
1) ab=ac=>b=c (Leftcancellation Law)
1) ba=ca=b=c (Rightcancellation Law)

Proof: (i) ab=ac = a'(ab)=a'(a ¢)

= (a”'a)b=(a 'a)c (by associative law)
= eb=e¢ (~ala=e)
=b=c

i1) Prove yourselves.
2.14 Solution of linear equations
a,bbeing elements of a group G, solve the following equations:
1) ax=b, iil) xa=b

Solution: (i) Given:ax=b =a'(ax)=a'b

= (a'a)x=a’'b (by associativity)
= ex =a’'b

= x =a'b which is the desired solution.

i1) Solve yourselves.

Note: -_Since’_t_he;invéme (left or right) of any element.a of a group is unique, from
the above procedure, it follows that the above solution is also unique.
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2.15 Reversal law of inverses

If a,b are elements of a group G, then show that
(@ab)! =b7'q'
Proof: (ab)(b'a')=a(bb')a™ (Associativelaw)

=aea”

=aa’

=e

~.abandba™ are inverse of each other.

Theorem: If (G, 3 ) is a group with e its identity, then e is unique.
Proof: Suppose the contrary that identity is not unique. And let ¢’be anotheridentity.

e, ¢ being identities, we have

eXe=ex ¢ =¢  (eisan identity) ()

e€Xe=ex e =e (€’is an identity) (it)
| Comparing‘(i) and (ii) -

¢ =e.

Thus the identity of a group is always unique.
Examples:
. 1)  (Z,+)hasno idéntity other then 0 (zero).
ii) (7R- {0}, x) has no identity other than 1.
iii) (C,+) has no identity other than 0 + 0i,

iv) (C,.) has no identity other than 1 + 0i,
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1
v) (M,,.) has no identity other than [0 ?] :

where M, is a set of 2 X 2 matrices.

Theoram: If (G, % ) is a group and a € G, there is a unique inverse of a in G.
Proof: Let (G, ¥ )be agroupand a € G.

Suppose that «” and a”are two inverses of a in G. Then

a’'=a" ¥ e=a % (a¥% a") (a”" 1s an inverse of a w.r.t. 3 )
= (@ ¥ a)¥% a" (Associative law in G).
=e¥ a (a’ is an inverse of a).
=a" (e is an identity of G).

Thus inverse of a is unique in G.
Examples 16:

1) in group (Z, + ), inverse of 1 is —1 and inverse of 2 is -2 and so on.

u) in group (’_k‘,- {0} x) inverse of 3 is 5 etc.

. Operatmn ® p.erfonned on t.hetwo member Set G ={0,1}is shown in them
adjoining table. Answer the questions: -

i) Name the identity element if it exists? e |01

ii) What is the inverse of 1? ,

iii)  Is the set G, under the given operation a group? OB (KO8 E1
Abelian or non-Abelian? 1RINIRIE0

2. The operation @ as performed on the set

{0,1,2,3}is shown in the adjoining table, show that

the set is an Abelian group?

3. For each of the following sets, determine whether or
- not the set forms a group with respect to the

indicated operation.

wlo|=|c|D
W N =)o |O
(=] ! ) (22 ot ot

— O | WM | N
N = O | W W
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Set Operation
The set of rational numbers X
The set of rational numbers T+
The set of positive rational numbers X
The set of integers -
The set of integers X

Show that the adjoining table represents the sums of the elements (@ | £ | 0
of the set {E,0}.

What is the identity element of this set? Show that this set is an A
abelian group. 0|0 | E

Show that the set {l,m,®*}, when @> =1, is an Abelian group w.r.t. ordinary

multiplication.

If G is a group under the operation x and a,b € G, find the solutions of the
equations: ax x=b, xxa=b .

Show that the set consisting of elements of the form a + -\Eb(a,b being rational),
is an abelian group w.r.t. addition.

Determine whether,( P(S) ,x ), where x stands for intersection is a semi-group,

a monoid or neither. If it is a monoid, specify its identity.

Complete the following table to obtain a semi-group under x

x|lalb

alcl|lalb
blal|b|c

Gl llE=1 | R=="4 | R G

. Prove that all 2x2 non-singular matrices over the real field form a non-abelian
group under multiplication. e
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Matrices and
Determinants

3.1 Introduction

While solving linear systems of equations, a new notation was introduced to
reduce the amount of writing. For this new notation the word matrix was first used by
the English mathematician James Sylvester (1814 — 1897). Arthur Cayley
(1821 — 1895) developed the theory of matrices and used them in the linear

transformations. Now-a-days, matrices are used in high speed computers and also in
other various disciplines.

The concept of determinants was used by Chinese and Japanese but the
Japanese mathematician Seki Kowa (1642 — 1708) and the German Mathematician
Gottfried Wilhelm Leibniz (1646 — 1716) are credited for the invention of

determinants. G. Cramer (1704 - 1752) employed the determinants successfully for
solving the systems of linear equations.

A rectangular array of numbers enclosed by a pair of brackets such as:
295320
2 -1 3 . 1 -14 -
i or
[—5— 4 7] & 326 an
41 -1

is called a matrix. The horizontal lines of numbers are called rows and the vertical
lines of numbers are called columns. The numbers used in rows or columns are said
to be the entries or elements of the matrix.

The matrix in (i) has two rows and three columns while the mz_itrix in (ii) has 4
rows and three columns. Note that the number of the elements of the matrix in (ii) is

4x3=12. Now we give a general definition of a matrix.

e
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Generally, a bracketed rectangular array of mxn elements a;(=1,2,3,.....m;

Jj=12,3,....,n), arranged in m rows and n columns such as:

ay aq ap a,,

Ay Gy Ay a,, o
; (ii1)

aml aml an13 amn

is called an m by n matrix (written as m X n matrix).

mXnis called the order of the matrix in (iii). We usually use capital letters
such as A, B, C, X, Y, etc., to represent the matrices and small letters such as a, b, ¢, [,
m, n, @,,,a,,,0,3, «+«+ €C., to.indicate the entries of the matrices.

Let the matrix in (iii) be denoted by A. The ith row and the jth column of A
are indicated in the following tabular representation of A.

Jjth column

a, 4, a, - 4; a,

ay Ay Ay 't Gy Asn

(IR e ey a,,

A= : : 3 : : . (1v)
ith row — al] alz a{z e al} e am
_aml Ay Gz o amj a"m-

The elements of the ith row of A are a; a;, a3 ... a; ... a;while the
elements of the jth column of A are a;; a,; a;; ... q;.... a,; - We note that a, is

, the element of the ith row and jth column of A. The double subscripts are useful to

name the elements of the matrices. For example, the element 7 is at a,,position in the

; [2 =
matrix

5 4 7] .For convenience, we shall write the matrix A as:

A= [ab"]mm OI'A = [al:f]’ fOr !‘ = 1, .2, 3'\,__,. m;j = 1', 2, 3‘..-_‘n. “rhel-e
a; is the element of the ith row and jth column of A ' '

by
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: ‘y is also known as the (i, j) th element or entry of A.

The elements (entries) of matrices need not always be numbers but in the
study of matrices, we shall take the elements of the matrices from 7K or from C.

8 pte: The matrix A is called real if all of its elements are real.

Row Matrix or Row vector: A matrix, which has only one row, i.e., a 1xn matrix of
the form [an Ty Ty s ah] is said to be a row matrix or a row vector.
Column Matrix or Column Vector: A matrix which has only one column i.e.,

as;
* -J . - .
-an mX1matrx of the form | a;; |is said to be a column matrix or a column vector.

amj

2

For example [I —1 3 4] is a row matrix having 4 columns and | —1|is a
3

column matrix having 3 rows.

" Rectangular Matrix: If m# n, then the matrix is called a rectangular matrix of
order mXn, that is, the matrix in which the number of rows is not equal to the

number of columns, is said to be a rectangular matrix. For example;

2 0

2 ul am'l1 2t are rectangular matrices of orders 2x3 and 4Xx3
—1 0 4 3 5
: 0 2

respectively.
L

Square Matrix: If m = 7, then the matrix of order mxn is said to be a square matrix

.of order n or m. i.e., the matrix which has the same number of rows and columns is
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' ety
2555 |
called a square matrix. For example; [0],[ 1 6]and 2 —1 8|are square i
35N '-

matrices of orders 1, 2 and 3 respectively.

Let A= [a,.j]be a square matrix of order n, then the entries
a,, 4y, Qy, ..., a, form the principal diagonal for the matrix A and the entries
Qs @y, s @y, s @, 44,4, form the secondary diagonal for the matrix A. For

Ay G A3 Ay

Ay Az, @y Gy

example, in the matrix , the entries of the principal diagonal are

ay @5 diy, Gy

fl’-u a;, A, ay
ay),an,ass3,ass and the entries of the secondary diagonal are a,,,a,,,a5,,4,, -
The principal diagonal of a square matrix is also called the leading diagonal or
main diagonal of the matrix.
Diagonal Matrix: Let A = [a;] be a square matrix of order n.
If a;; = O for all i+ jand at least one a;; #0 for i = j, that is, some elements of

the principal diagonal of A may be zero but not all, then the matrix A is called a

diagonal matrix. The matrices

0 0 0O
%050 ORsl 00
[7],/0 2 0|and b are diagonal matrices.
0 0 5
000 4|

Scalar Matrix: Let A= [a ,j]be a square matrix of order n.

If a; =0for éll i # jand a; = k (some non-zero scalar) for all i = j, then the

matrix A is called a scalar matrix of order n. For example;
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3000
0] R R
, 10 a O]and are scalar matrices of order 2, 3 and 4
07 0 030
0 0 a
0 00 3

respectively.
Unit Matrix or Identity Matrix: Let A=[a;] be a square matrix of order n. If a; = 0

foralli#jand a; = 1 for all i = j, then the matrix A is called a unit matrix or identity
matrix of order n. We denote such a matrix by /_ and it is of the form:

100 --0
e W) e ()
L=00 1 - 0
000 - I

100
The identity matrix of order 3 is denoted by I3, that is, I3 = [0 1 0:\
0 01

Null Matrix or Zero Matrix: A square or rectangular matrix whose each element is
zero, is called a null or zero matrix. An mxn matrix with all its elements equal to

zero, is denoted by O,... Null matrices may be of any order. Here are some
examples:

0 0 of(o 0O

| 0 0 O[O O S at0 OrE0
0o 0 allo ¢ ollo ol{olo 0 0 ¢
- {of[0o 0 0 0
O may be used to denote null matrix of any order if there is no confusion.

Equal Matrices: Two matrices of the same order are said to be equal if their

. corresponding entries are equal. For example, A = [aU]m and B = [b.-_.- are equal,

ie, A = B iff a;=b, fori=1,2,3,.....m,j=123,..,n. In other words, A and B
represent the same matrix.

3.1.1 Addition of Matrices

Twd matrices arc-;cop'f.onnable for addition if they are of the same order.
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The sum A4 + B oftwo m x n matrices A = [a;] and B = [b;] is the m x n matrix i
C = [c;] formed by adding the corresponding entries of 4 and B together. In symbols, we
write as C = 4 + B, thatis: [c;] = [a; + b;] _ ’
where ¢;=a; +b; for i=1.2,3,...,mand j =1.2,3,....n.

Note that a;; + b;; is the (i, j) th element of A + B.

Transpose of a Matrix: If A is a matrix of order mxn then an nXm matrix
obtained by interchanging the rows and columns of A, is called the transpose of A. It
is denoted by A" If A=[a; ], then the transpose of A is defined as:

A' =[], Where aj=aj fori=1,2,3,....,nand j= 1525358 m

e bl 1 blz b|3 b]-l-
For example, if B=[b;]ye =|bu bn by bu |, then
b}l b31 b33 b34

B' =[b;1,, Wwhere bj=b; fori=1,2, 3,4andj=1,2,31ie,

b;l b:l bl'3 bl 1 b! 1 b?n 1

B; = b;I b;Z b;3 = bl'.". b22 b32 |
b; 1 b;z b;3 Ibl.'i b23 b33
b;l b;l b;'.'c bli’o bl-l b3-4

Note that the 2nd row of B has the same entries respectively as the 2nd

column of B' and the 3rd row of B' has the same entries respectively as the 3rd column

of B etc.
Example 1:
1 0 -12 25 =108 ) A
If A=|3.1 2 5|and B=|1-3 -1 4 [,thenshow that
0 -2 1 6 312 -1 .

(A+B) =A' +B'
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Solution:
IENORE=12) 27 -1, .3 1 1+2 0+(-1) -1+3 2+l
A+B=|3 1 2 S5|+{1 3 -1 4 |=|3+1 1+3 2+(-1) 5+4
0 -2 1 6] |3 1 2 -1| [0+3 =-2+1 1+2 6+(-D)
(3 -1 2 3
=[4 4 1 9
BEE=18 3155
el
t_|-1 4 -1 :
and (A+B)' =|7" | 1)
30 8

Taking transpose of A and B, we have

I3 SO ¥ M2 "3

7| ROR D) t _|-1 3 1

S BRI fand B 550
25 Gl 1o wa’ L
13 R0 53 S 3E k) L

e ORI 2 S 3 |14 B

—il vl 4 =i 2 )l
pYASt 16 4 =l e

From (1) and (2), we have (A+B)' = A’ + B’
3.1.2 Scalar Multiplication

If A=[a;]ismxn matrix and k is a scalar, then the product of k and A,

denoted by kA, is the matrix formed by multiplying each entry of A by k, that is,
s KA = [kay]

Obviously, order of kA is mXxn .

ifA=[a;]e M,,, (the set of all mXn matrices over the real field 7R.), then
ka;e 7R. ,foralliand j, which shows that kAe M,,,. It follows thatthe set
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M, possesses the closure property with respect to scalar ,ﬁulﬁplicaﬁon. If
A BeM _and rs are scalars, then we can prove that r(sA) = (rs)A,

mxn

v (r+s)A=rA+sA, r(A+B)=rA+rB.
3.1.3 Subtraction of Matrices
If A=[a;]and B=[b; ]are matrices of order mXn, then we define

subtraction of B from A as:
A-B = A+(-B) .
(ay] + [-Di) _
[ag + (=bp)] =[ag=by] ~ fori=1,2,3,...omj=1.2,3,...m

Il

Il

Thus the matrix A-B is formed by subtracting each entry of B from the
corresponding entry of A.

- 3.1.4 Multiplication of two Matrices
Two matrices 4 and B are said to be suitable for the product 4B if the
number of columns of A is equal o the number of rows of B. :
Let A=[a;]be a 2x3 matrix and B=[b;]bea 3X2matrix. Then the
product AB is defined to be the2x2 matrix C whose element c;is the sum of °

products of the corresponding elements of the ith row of A with elements of jth
column of B. The element Ca of C is shown in the figure (A), thatis

Fig.(A)

Cyy =0y by, + Gyb,, a5, by . Thus

by by ; e
[au a5 alail T [aubu +apby taghy  a,b,+ apby, + aisbaz] =

b, byl|=
bk Ay by, +aynb, +ayby  ayby, +ayb, +a,b,
w On :

"AB=
a, a4 axn
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by b
e ud 4, 9, A4,
Similarly BA=|b,, b,

Ay Gy Ay
by, by

b, a,, +by,a,, bl‘lall +b,a,, b6, +b,a,,
=|bya,, +bya,  bya, +bypay, by a;+byas,
bya,, +by,a, by a,; +bya,  byap; t+bya;,

AB and BA are defined and their orders are 2x2 and 3 3respectively.

2 I~.If the productAB is deﬁned then the order of the product can be
lllustrated as glven below

i Ordﬂr fA, _1."_,._ (M P i p A e
] - i S Tk e R e i e e e £ D AR a3
0 D=2 3
Example2:If A={1 2 -3|andB=|-1 -4 6|, thencompute A’B.
1 =2 0O -5 5
Solution:
; 2 -1 0|2 -1 0
A’=AA=|1 2 -=-3||1 2 -3

[0 ollili 2N —2
4-140 -2-2+0 0+3+0] [3 -4 3
=[2+2-3 -1+4-6 0-6+6|=[1 -3 0
2+2-2 —-1+4-4 0-6+4| |2 -1 -2

aW—geeaili2 s —2 3]
A’B=|1 -3 0 ||-1 -4 6
2 =1 -2J|0 -5 5]




-

_A is

-_  the two diagonals.
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6+4+0 -6+16—-15 9-24+15 108 =50
=(2+3+0 -2+12+0 3-18+0 =5 10 -15
4+1+0 -4+4+10 6-6-10 SE108 =10

3 2 Determinant of a 2 x 2 matrix
We can associate with every square matrix A over ’P, or C, a number |4],

- known as the determmant of the matrix A.

The determinant of a matrix is denoted by enclosing its square array between
vertical bars instead of brackets. The number of elements in any row or column is

' ' b
called the order of determinant. For example, if A = [a d}' then the determinant of
c

a b
¢ d|

Its value is defined to be the real number ad — bc, that is,

4=

b
’:ad—bc
d :

[2 -1 1 4 '
For example, if A = and B = , then
- (4 3 2 8

=, 3‘=(2)(3)—(—1)(4)=6+4=L0

=1, 8‘=(1)(8)—'(})(2>=8f8=0_

Hence the determinant of a matrix is the difference of the products of the entries in
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a\_ ___,,b
£
- c ad

e ART R
TARS v

=ad -bc

3.2.1 Singular and Non-Singular Matrices

A square matrix A is singular if |A| = 0, otherwise it is a non-singular matrix.

1 4
In the above example, |B|=0 = B = [2 8] is a singular matrix

- 28]
and lAl =1020= A= [4 3 ] is a non-singular matrix.
3.2.2 Adjoint of a 2 x 2 Matrix
The adjoint of the matrix A = [“
C
: g =3l
K =C a

3.2.3 Inverse of a 2 x 2 Matrix

b
d] is denoted by adj A and is defined as:

Let A be a non-singualr square matrix of order 2. If there exists a matrix B such
180
that AB = B4 =1, where [, = [0 1} , then B is called the multiplicative inverse of 4

and is usually denoted by 4™, that s,

Example 3: For a non-singular matrix 4, prove that Al = I—i-iadj A

Solution: If A=[a b] and A"=[p q],men: ‘
r s

c d

I
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AA™' =1, that s, |
a bllp g al 1 0
c di|lr s ()l

_ |ap+br aq+bs 1 0
or =
cp+dr cq+ds| [0 1

ap+br=1..%1) ag+bs =0...(11)
cp+dr=0..(iii) cq+ds=1..(iv)

: —-c
From (iii), r=—2p.
(i1i) 7P
Putting the value of r in (i), we have

ap b =S| S ad=te -1;>p— g f.
AT d ad b

anid r_—c G d . Ik,
T T

Similarly, solving (ii) and (iv), we get

_I=b P
ad-bc’ ad — bc : 1

q

Substituting these values in [p qil , we have . f
r s

d -b
A" =|ad-bc ad-bc|_ 1 d -b
—C a ad-bc|—-c a
ad—-bc ad—-bec

1o s
ThusA“=madJA_
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3013
Example4: Find A7if A =[l J and verify that AA™ = A™'A

Solution: |A|= E ::l =5-3=2

Since |A|# 0, we can find Azt

1

A'=—adjA
i
18y =3
G M =8 s
A_1=‘_"'_ = 2 2
¢ 2[—1 5] -1 5
' Lo )
il =g
5, Nl zss =
| Now AA' = 2 2
| : [T =L
| 2 Eon|
Sk di - F150.15
RoR2 2 24l 0 :
- = )
TR 3 5 0 1
———— _.__.+_
7)1 o8 gk )
1 =g
e | (553
-1, | 2 2
and .A” A= __1 i [1 1]
L)
5043 3 3
D) ) 1 0
_|2 2 252 | (ii)
Sy G T e O |
— 4= — 4=
OIDE G R )
From (i) and (ii), we have
AA' =A"'A
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- 3.3 Solution of simultaneous linear equations by using

matrices

Let the system of linear equations be

a, X, +a,x, = b, }

Ay X, +ayX, = b,

where a,,,a,,,4,,,a,,b, and b, are real numbers.

The system (i) can be written in the matrix form as:

{““ “‘3]["[‘]:[1"] or AX=B (ii)
Ay An || X, b,

a,, 4ap X b,
where A= e = and B =

a, Qn X3 b,

If |A| + 0, then A" exists so (ii) gives
A'(AX)=A"'B (By pre-multiplying (ii) by A™)
or (A"A)X =A"'B (Matrix multiplication is associatiye)
= LX=A'B (“ATA=1) '
=5 Y —ARE

[x]:| 1 [ az "alzi||ibli|
or =—
X, |A| -a, a; ||b |-

ba,, —a,b,

= L|:a22bl —a;,b; i| s |A|

Al - a,b +ayb, | | ayb, —biay
4
: b ay,| a, b
The, . st S

e S —

e

R

rot e




b -

7135 1N SRS R

It follows from the above discussion that the system of linear equations such

as (i) has a unique solution if ]A| #0.

Example S: Solve the following systems of linear equations.

: 3x, —x, =1 5 X1 +2x, =4
i) ii)
xl+x2=3 le+4I2 =12
_ * 3x,—x,=1],
Solution: (i) The matrix form of the system is
x +x,=3

NG

3 _1 1
oL A X =R P (D Bere WA = X0 | and B =
1 %, 3

-1
=3+1=4
\

1
3] , therefore,

1

e
4|-1 3| |_1

4

) becomes X = A'B, that s,

.p|m.n|-—-
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= x, =landx, =2
(i) The matrix form of the system
138 2 1S | Rl R4:
2 4f|x,| |12

1 2
L E 4-4=0,so A does not exist.

xp+2x; =4 is
2x1 +4xy =12

" and |A|=1

Multiplying the first equation of the above system by 2, we have
2x, +4x, =8but 2x, +4x, =12

which is impossible. Thus the system has no solution.

Exercise3.1
TR

If A= 28 and B = , then show that

1S 6 4
i) 4A-3A=A ii) 3B-3A=3(B—-A)

(20 {0) "
If A= T ,show that A™ =1,.
=1

Find x and y if .
; x+3 1 2.0 s x+3 1 Yyl
1) = ii) =
-3 3y-4 -3 2 -3 3y-4 -3 2x
—ihal 8 0" 3 12 '
If A =[ ]and B= [1 { 2:| , find the following matrices;

i)  4A-3B i)  A+3(B-A4)

1‘~‘irld.1ra.r1dyif2 g x+21 .x Y =4 -2 3
1 y 3 0 2 -1 ] RS |

S
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6.

10.

11.

12.

13.

1‘ - A Textbook of Algebra and Trigonometry

14.

If A =[aij] 3x3. show that

i) A(A)= (MDA i) A+uA=2A+pA i) M-A=(A-DA

If A ={aij] »3and B =[bij] 2y Show that (A + B) = AA +AB.

2 0 0
If A= and A’ = , find the values of a and b.
- |la b 0 0
[1 -1 5 PL @
If A=|. and A° = , find the values of a and b.
la b 0 1
1 -1 2 233w ()
If A= and B = , then show that (A+B)' =A' +B'.
{03 S1 1 2 -1
1 1 3
Find A’ifA=|5 2 6
-2 -1 -3
Find the matrix X if:.

. SRl e P
) X[—z 1}‘[12 3] iy [-2 1]X'[5 10]

Find the matrix A if, -

i 2 lid 5), il QEEaRR
i 0 0|a= i A=|_
D N D [—1 2] [3 A=
2l T2
rcos¢ 0 -sing cos¢ O sing
Show that §) g 0 0 1 0 |=3vh.
' rsing 0 cos¢ |[|—rsing O rcos¢




Chapter 3: Matrices and Determinants

34 Field

097

A set F is called a field if the operations of addition ‘+” and multiplication *
on /< satisfy the following properties written in tabular form as:

Addition

1) Forany a,be F,
a+be F

ii) Forany a,be F,

a+b=b+a

iii) For any a,b,c€ F,

(@a+b)+c=a+((b+c)

iv) For any
a€ F,3 0e Fsuch that

a+0=0+a=a
v) For any

a€ F,3 —ae Fsuch that

a+(—a)=(-a)+a=0

vi) For any a,b,c€ F,

Multiplication
Closure
For any a,be F ,
abe F
Commutativity
For any a,be F,
ab=ba
Associativity
For any a,b,ce F,
(ab)c=a.(bc)
Existence of Identity
For any
a€ F,3 1€ Fsuch that
al=l.a=a
Existence of Inverses : :
v) Forany ae F,a#0
73 L ¢ F such that
; a- : :
| 1
a(-)=)a=1
' a a
Distributivity

D, :a(b+c)=ab+ac
-D,:(b+c)a=ba+ca

All the above mentioned properties hold for O, 7R and C.

T T s TR
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3.5 Properties of Matrix Addition , Scalar Multiplication and

Matrix Multiplication.

If 4, B and C are n x n matrices and ¢ and d are scalers, the following

properties are true:

1.

Commutative property w.r.t. addition: A+B=B+A

_ | Note:w.r.t. is used for “with resbect to”.

R SR

o

10.

Associative property w.r.t. addition: (A+B)+C=A+(B+C)
Associative property of scalar multiplication: (cd)A = c(dA)
Existance of additive identity: A+ O = O+ A=A (O is null matrix)

Existance of multiplicative identity: JA = AI=A (I is unit/identity matrix)

~ Distributive property w.r.t scalar multiplication:

ta) ¢(A+B) = cA+cB (b) (c+d)A =cA + dA
Associative prbperty w.r.t. multiplication: A(BC)=(AB)C
Left distributive property: A(B+C)=AB+AC

Right distributive property: (A+B)C=AC+BC

¢(AB) = (cA)B = A(cB)

2 0 1 1 -1 0
Example1: FindABandBAif A=|1 4 2|and B=|2 3 -1
SRDNG6 18=2 3

BRI ~1 0

1 4 2(|12 3 -1

Solution: AB =

3 0 6[[1 -2 3

[2x1+0x2+1x1 2X(=1)+0x3+1x(-2) 2X0+0x(=1)+1x3
=|Ix1+4x2+2x1 1x(=1)+4x3+2x(-2) 1x0+4x(-1)+2x3
[3X1+0%X2+6X1 3X(-D+0x3+6x%x(—2) 3x0+0x(-1)+6x3

-
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3 -4 3

= | BT w2 (1)
9 -15 18

i1 —=1" 0N]\[i2N0m]
2.1 3 wn=1 1N D
1 =2, 3 [I3M0OMNE

BA

[1%2+ (-1)X1+0%3 1x0+(=1)x4+0x0 1X1+(-1)x2+0x6 |"
=[2%2+3x1+(-1)x3 2x0+3x4+(-1)x0 2x1+3x2+(-1)x6
| 1X2+(=2)x1+3x3 1x0+(-2)x4+3x0 114 (-2)%x2+3%x6

[1 -4 -1
=4 12 2 )
9 -8 15

-

Thus from (1) and (2), AB # BA

Note: Matrix multiplication is not commutative in generaliio it or St

| 2 a0
Example2: If A=|1 0 4 -2/, thenfind AA" and (A")'.
—3 52 i) :

Solution: Taking transpose of A, we have

2 1 -3
-1 0 5
A = , SO
3 o4 =)
0 -2 -1
20 %] M=y
20— | R ) LAk
AA'=|1 0 4 -2 50 o
-3 5 2 -1

e
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[ 4+1+9+0 2+0+12+0 —-6-5+6+0
=|12+0+12+0 1+0+16+4 -3+0+8+2
|—6-5+6+0 -3+0+8+2 9+25+4+1
(14 14 -5
=81 49217
-5-7 39
220 =3 :
DI ]53
s=1 0. S5 oy o °
As A= ,S0(A') =|1 0 4 -2| whichisA,
LT ) §E ;
L) S= il
- That is, (A) =A. (Note that this rule holds for any matrle)
g, b Exercnse32
1. IfA [au]m,thenshowthat
i) LA=A i) Al, =A
2. Find the inverses of the following matrices.
i 3 -1 i) -2 3 i) 21T V)
ii iii
o 45 - i)
3. Solve the following system of linear equations.
.\ 2x;—3x3 =5 =y 4x+3xp =5]| ... 3x-Sy=1
Y 5xl+x2=4} W ey —x =7 Wo2x4y =3
I -1 2 2 1 -1 1 3 -2
4. IfA=|3 2 5|, B=({1 3 4|and C=(-1 2 0
-1 0 4 -1 2 1 3 4 -1

1)A-B ii)B-A i) A-B)-C

} , then find

iv)A-(B-C)

(0] —i 1 DIl
§o2 IfA=[! ], B=[2; ] and C=|: I_ _},thcnshowthat

1 —i i =1
1) (AB)C = A(BC) - ii) (A+B)C = AC+BC
" 6. If A and B are square matrices of the same order, then explain why in general;
i) (A+B)? # A>+2AB+B? ii) (A—B)* # A* -

iii) (A+ B)(A— B) # A> —'B*
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3.6

2 =13 0
IfA=|1 0 4 -2|,thenfind AA" and A’A.
D il

Solve the following matrix equations for X:
) 3X-24=B if A=[2 2 ‘2] and 3:[2 G ]

1145 SR
B At =i _B =it ©
i) 2X-34=B 1fA—[_2 4 5] and 3-[4. 2 1]

Solve the following matrix equations for A: _
|4 3 P S AT SR R | S 2 0
1) A—- = i) A - =

2" 2 —1 =2 3 6 4 2 351 S 1S

Determinants
The determinants of square matrices of order n=3, can be written by

following the same pattern as already discussed. For example, ifn =4

describing a method for computation of determinants of order » > 3, we introduce the
following definitions. ‘

3.6.1 Minor and Cofactor of an Element of a Matrix or its

Minor of an Element: Let us consider a square matrix A of order 3 .Then the minor
of an element a;

 formed by deleting the ith row and the jth column of A(or|Al).

a, Q4 a; aj a, G 4 4Gy,
G, G anna; 7

= 2 72 72| then the determinatof A=|A|=
31 Gn Gy Gy } A3 Gy Q33 Gy

Ay Gy Gy Gy

Ay Gy Ay Ay Ay Gy Qg3 Gy

Now our aim is to compute the determinants of various orders. But before

|
1
|
;

Determinant

denoted by M is the determinant of the (3—1)X(3-1) matrix

U!

For example, if
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a, a, aj

A=|a, a, a,|,then the matrix obtained by deleting the first row

a; Gy ay

-t qr--Gyr--z -

a; Ay s |
](see adjoining figure) |a, av, ax

and the second column of A is {
a; ay !
Ay QG Ay

: . ! i _ el
and its determinant is the minor of a,,, thatis, M,, =| *'

a; Qs
Cofactor of an Element: The cofactor of an element a;; denoted by A; is defined by
Ay =D xMy

where M|, is the minor of the element a;of Aor|A|.

L Ay d4p dy Ay

For example, A, =(-1)"*M,, =(-1)’

dy; Qajy a3 Qi

3.6.2 Determinant of a Square Matrix of Order n >3:

The determinant of a square matrix of order # is the sum of the products of
each element of row (or column) and its cofactor.

a, 4, a3z ‘'@ 4; - aln-
a; Gp 4Gy - Gy 4y,
a; Ay a;s st Ayp ot Oy,
THAT= |15 : - : : |, then
a, a, a5 - a; - q,
\_anl s Uy R o R ]
|A| = a;j1Ajl +aj2Aip +ai3A3 t ...+ ainAin fori=1,258, 2, n

or |Al=a, A +a,A,; +a;A, +....+a,A, for j=1,2,3,..n
Putting i = 1, we have _
|A| =a, A, +a,A,+a,A; +...+a, A, which is called the expansion of |Al by the

Arst row.
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.

G - G 4y
If A is a matrix of order 3, thatis, A=|a, a,, a,, |, then:

a; az as;

|A|=a,A, +a,A, + &,.344,3 fori=1,2,3 | (1)
or Al =ay,A; +a,,A,; +ay A, for j=1,2,3 i )
For example, for i =1, j =1and j =2, we have
|Af=a1',A“ tapA, +a,A, @
oL ‘Al =ay A, +ay Ay +ay 4, . (ii)
or |A|=a,A, +a,A, + ayA;, 5.} : R (1i1)

(iii)  can be written as: |A| = a,, (-1)'"* M, + a, (-1)** M, + a,, (-1)** M.,
ie., |A| ==a,M,, +a,M,, —a,M.,, ; (iv)
A |=a|1M11 _al?.MI? +a,M,, v)

Similarly (1) can be written as

Putting the values of M .M 2 and M 3in (v, we obtain

An  dy Ay Ay ay, Qaxn

' |A| =4q) —ap +a),
a;, dsy a; Qay @51 el

Or Al = dy (ayay; = dydy,) = Gy, (g, sy = ayytty, ) + (aydy; —aydy) (Vi)

The second scripts of positive terms are in circular order -
of anti-clockwise direction ie., these are as 123, 231, 312 ”
(adjoining figure) while the second scripts of negative terms are |
such as 132, 213, 321. ] R

An alternative way to remember the expansion of the determinant

. 5 - B . ’
or |A, =)0y +A1y05,0y, + 030,05, — 000385, — Q505,033 — Q138,,a5, (Vi)

B S
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=2 3
Example 1: Evaluate the determinant of A =[~ 283 1}

AWEEaT
=283
SOl
4 -3

Using the result (v) of the Art.3.6.2, that is,
\Al---a“Mu —a,M,+a M,;  weget

O] 23
R I
= 1[6—-1(-3)]+2[(-2).2—-1.4]+ 3[(=2)(-3) —12]
= (6+3)+2(-4-4+3(6-12)

Solution:  |A|=

=1

=9-16—-18=-25
1 -2 3
Example 2:Find the cofactors A,,, A and Ay, if A=) =2 3 1|and find |A|.
=30
Solution: We first find M5,,M, and My,
M, =\_2 R|E RS g B =\1 3\=2-1’2 =-10
4 2 4 2

NI S - i) s A, =), S1C10)° =0
A, =DMy, =D =T
and lAl =apA, t aphAn +anhn = =(-2)8+3(-10)+ (-3)=7)
! =-16—-30+21=-25
Note that @A, +ay Ay +834, = 18) + (-2)(-10) +4(-7)
=8+20-28 =0
and ap Ay, +aphy tashAy = —3(8) +1(-10) +2(-7)
=24-10-14 = 0 ;
Similarly we can show that a;A;; + ay Ay, t+ayAsn =

allA‘I +a|zAzz +a|3A7.1 =0 and g4, +‘112An +au n =0

T
|




Chapter 3: Matrices and Determinants

3.7 Pl‘OpeI'tleS of Determinants which Help in thelr Evaluation

1. For a square matrix A, Al =IA'l
2. If in a square matrix A, two rows or two columns are interchanged, the

determinant of the resulting matrix is —|A| :

3. If a square matrix A has two identical rows or two identical columns, then
4=

4. If all the entries of a row (or a column) of a square matrix A are zero, then
4=

5. If the entries of a row (or a column) in a square matrix A are multiplied by a

number k € 7R, then the determinant of the resulting matrix is & |A| :

6. If each entry of a row (or a column) of a square matrix consists of two terms,
then its determinant can be written as the sum of two determinants, i.e., if
a,+b, a, a;
B=|a, +b, a, a,|,then
a, +b, a,, as;

a, +b, a, a; a, a, ay| |b, a, aj __
|Bl =|ay, +b, ay ay|=|0y Gy Gu|t|by ay ay !

ay +b;, ay, ay ay a4y ay| |by 4y, ay
7 If to each entry of a row (or a column) of a square matrix A is added 'a non- __
zero multiple of the corresponding entry of another row (or column J,thlen‘ the St
determinant of the resulting matrix is |A|. - :

8. If a matrix is in triangular form, then the value of its determinant is the
product of the entries on its main diagonal. )
Now we prove the above mentioned properties of determinants.

Proporty 1:If the rows-and columns of a determma_nt are;interchanged, then the value
of the determinant does not change. For examples

I ——

g, %4
a; G4n

a
11
=@, A=Ay A5 =0y Ay— A3y Gpy = "I (rows and columns are interchanged) -

12 azz

Property 2: The value of a determinant changes sign if any two rows (columns) are
interchanged. For example,
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LTI O
=a,) G504y, Ay,
a; ax»
a;, a, : '
and =da,, A, —a,, a»=—(a, a,—a,, a,) (columns are interchanged)
Ay  ay

Property 3: If all the entries in any row (column) are zero, the value of the
determinant is zero. For example,

0 a, a;

Ay, ap a, 4ap

0 a,, a;|=0

=0 (expanding by Cl)

G328 d3s Ay, Ay

0 ay, ay

Property 4: If any two rows (columns) of a determinant are identical, the value of
the determinant is zero. For example,

c
c|=0, (it can be proved by expanding the determinant)

= 2 2
“w o O

&

Property 5: If any row (column) of a determinant is multiplied by a non-zero
number , the value of the new determinant becomes equal to k times the value of
original determinant. For example,

: a a St
|A| =[""" | multiplying first row by a non-zero number k, we get
a4y 4x
ka,, ka a,, .a
= = ka, an—ka,a, =k(a,ay—a,;a,)=k e
a, ap ; g a,

Property 6: If any row (column) of a determinant consists of two terms, it can be
written as the sum of two determinants as given below: '
a,+b, a, aj;| (@ %2 %3 b, a, ay,

a, +b;y G, axn|=ln %2 9 +1b,; - @y @, (proof is left for the reader)
a,, +by,, a,, G| |3 Gn %y by as, ay
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Property 7: If any row (column) of a determinant is multiplied by a non-zero
number k and the result is added to the corresponding entries of another row
(column), the value of the determinant does not change. For example,

a, 4ap a,, a,+kay

(k multiple of C, is added to C, )

a, ay| |a; ay+tka,

It can be proved by expanding both the sides. Proof is left for the reader.

201 =2 3. =4
1 5 -1
Example 3: IfA = , evaluate |4|
-5 =31 0
1 -1 0 2
2 NBIO RSN
1 !
Solution: |A| = 3 Sl
-5 =31 O
1 1T 02
0 0 3 0O
WY ‘
18 =15 () ).

Expanding by first column, we have

|A|=0.4,, +0.4,, +0.4; +1.A,,

0, & O DTN
=(-D""'x[4 5 =-7=CD|4 5 -7
-8 1 10 -8 1 10

= (-1)-3)J4x10- (-7)(-8)]= 3(40—56)=—48

x at+x b+tc .

Example 4: Without expansion, show that [x b+x c+a|=0
x c+x a+b
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Solution: Multiplying each entry of C,by —1 and adding to the corresponding
entry of C, i.e.,byC, +(-1)C,, we get

x atx b+cl |x atx+(-Dx b+c
x b+x c+al=|x b+x+(-Dx c+a
x ct+x a+bl |x ct+x+(-Dx a+b

x a b+c 1 a b+c|( by propertySor
=[x b c+al =xl b c+a|| taking xcommon
X ¢ a+b Il ¢ a+b from C,

1 a+(b+c) b+c
=xl b+(c+a) c+a,[

Il c+(a+b) a+b

adding the entries of C,to the
corresponding entries of C,

11 hetc
=x(a+b+c)l 1 c+a|, (by property 5)
1 1 a+b
-=x(a+b+c).0 (. C, and C, are identical or by property 3)
=0 i
X O =]
-Example; .5: Solve the equation 0 Sl =0
5 1 -2 3 4
-2 x 1 -1

Solution: By C,+C, and C, +C,, we have
X Odse] oil

ORSS1R R0 0

R S = )
=20 x ]l x=1

X 1 1
Expanding by R,,weget |1 1° 2 |=0 (- (=D**=D

-2 x+1 x-1
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bg ol 1
By R3+2R2,weget il 2 |=0
|0 x+3 x+3
x Lles]
or (x+3)]1 1 2/=0 (by taking x + 3 common from R;)
Al
x el
= x+3=0 or 1 1 2=0
0. 1581
=% x=-3 or x=0 (. R, and R, are identical if x = 0)

Thus the solution set is {— 3,0}.
3.8 Adjoint and Inverse of a Square Matrix of Order n>3

a, 4, 4a; ' : Ay A, Ay
If A=|a, a, a,|,thenthe matrixofco-factorsofA=|A4, A, A,]|,
Q3 Gy G5 Ay Ay Ay
A]l AZI A3l
andadj A= |A, A, A,
A Ay Ay

Inverse of a Square Matrix of Order n > 3: Let A be a non singular square matrix
ol order n. If there exists a matrix B such that AB = B4 = I, then B is called the

multiphcative inverse of A and is denoted by A '. It is obvious that the order of
A'is nxn.

Thus AA™' =7, and A™'A=1,.

If Ais a non singular matrix.then

I
A" =—adjA
4]

3 S R ) 2
Example 6: Find A™if A=|0 2 1
' T =1 1

Solution: We first ﬁnd‘ the céfactors of the elements of 4.

|
:
".
!
:
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A =(—l)""\2 1l=1(2+1)=3 A —(-1)‘*1'0 l‘—(—l)(—l)—l
11 —1 1 : ? 12— 1 l— Ve

0

5&_\0 2 2+1 2[
Ay=D" _1=1.(0—2)=-2, Ay =DM 1|=(—1)(0+2)=—2
o F2 | A0
A::. (‘1) | l=1.(l—2)=—-], A23=(_l)— : I=(_1)(_1__0):l
0 2 1 2
A, = (=D =1.(0-4)=—4, A, =1 =(-1)(1-0)=~1
3.()21\() 3_()01()()
Al 0
AB:(—D330 J=1{2—0y=2
' A, A, A 3 1= =2
Thus Al =|Ay Ay Ayl=[-2 -1 1
A:| A:j A‘.‘.- -4 -1 2
3 -2 -4
and adj A=[Al}.,= |1 -1 -1| (=~ Aj=A,forij=1,2,3)
‘ 2 1 2
Since |A|=a,,A +a,,A, +a,,A;
=1(3) +0(1) + 2(-2)
=3+0-4=-1, _
: . 3 -2 -4| [-3 2 4
So Kﬁjwmhil—14=-lll
H =20 90 2 2 -1 -2
1-1 2 15
Example7: If A=|1 4 |and B=[ 5 1:| , then verify that
2 -1 |
(AB)I=B'IA'_

27 3' —1-4 -3+2] [-5 -1
Solution: AB=|1 4 [ 5 1]= 1-8 3+4 |=|-7 7 |,s0
P ikl e




Chapter 3: Matrices and Determinants

=T 0y

18 = - 1351 "9 - -2
and B'A' = 2 il 2 A = andB'=1

31 ||izhieab=] 2 4 - 31

_[=1-4 12802+ =587
S =342 31406 1k | E=T 5

Thus (AB)' = B'A!

(ABY = [—5 -7 4}

Exercise 33

Evaluate the following determinants.

_ 5 -2 -4 S*u2: 53 L 25 =3
1. ) |3 -1 =3 ii =T i) (-1 3 4
-2 1 2 -2 1 -2 =2 516
a+l a-l a I 9321 =2 2a¢ a:' a
iv) | a a+l a-l V) -1 1 -3 vi)|b 2b- b
a-l a a+l 2 4 -1 CiR LG
2. Without expansion show that
678 2 3 -1 182583 :
()34 5= i) LIS 0l =10 i) 4 5 =0 ?
2 3 4 | 2 =3RS 789 |
3. Show that

ay- a, a;t0a,| |a, a, a,| |a,; a, 0;

1) Ay Gy Ap+0yu|=a, Gy ault|a, a, o

31 Gy Gy t+0g| a4y Gy Gyl |G G5 O

213 29180 a+l a a
ii) SO G = Ol 18D i) | a a+l a =Iz(3a+1)
215 2ol a a a+l

P P B . A e s T B A
T
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|2 B | 1 1 b+c a a
GEEyaR i =lxt iy zlY) b c+a b |=4abc
yz = x| |x° y2 z: c c a+b
b -1 a rcos¢ 1 -—sing
vi) l[a b 0O=a’+b’° viDl 0 1 0 |=r
IS gesh - rsing 0 cos¢
a btc ath

o 3
vili)[|b - ct+a bt+c|=a +b +c—3abe
atb cta

o

a+A b - c

ix)| a- b+A ¢ |[=2@+b+c+A)
a b c+A

] ]
X) a b c|=(@-b)(b-c)c—a)
il bH | c2
| b+c a a’
xi) lc+a b b2 =(a+b+c)a-b)b—-c)ic—a)
a+b ¢ c? '
JORER 2 —3 S =2 .5
4. IfA=|0 -2 O|and B=| 3. -1 4 |,thenfind;
-2 =2 1 =2/ 01 =2
) Ajp,Ay, Az andIAI ; ii) Bg,,Bin.Bﬂ ahdlBl

5. Without expansion verify that

1 a?

o B+y 1 18 273 ' .
i) B y+a 1=0 i [2 3 6x=0 iii) [ b7
Y a+p : GEESIN0 ; 8 22
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V) lb—c c-a a-H=0
c—a a-b b-c
bc-'ca ab mn Nl L 172 e
V) 1 _;._ L:O Vi) nl m m*=l m* m
3 b E Im n n’ Tasnzwyn:
2a 2b 2c

Vil p opeipiiel®ig

T 260 | iTwr2 i 7 2 -1 —a 0 ¢
Vi), 16 3 2l=|6 3. 15/t]i6 a3 U0 I S,
=3 5 1| (=375 =3 NI=3 5 b -c 0
Find values of x if
ol X 1 x=1 3 ik o)l
i) |-1 3 4=-30 i) -1 x+1 2/=0 iii)) |2 x 2/=0
SEL e 25 =28 3 6
Evaluate the following determinants:
3svo ' 0 age R RN e S
: N = OB 8D
-1)12—35 R 1")97—111
41 -2 6 NS0 T
TR |
1 o] (] 3
Show that =(x+3)(x-1)".
o abese :
IR als il oy

Find |AA'|and |4’ 4| if
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10.
11.

12.

14.

18.

16.

. 17.

3

] 3828 =1 5 2
1) A= ii) A=

2801 3 1

If A is a square matrix of order 3, then show that |kA| =k’ lA| )
Find the values of Aif A and B are singular.

[
W o— =

SY AL e
4 13
2 1
A=|7 3 6|, B= 3 >
231 : SEONNONE |
2 A -1 3
Which of the following matrices are singular and which of them are non singular?
11 2 -l )
1 0 3 2: 3 =1 25 43
D3 1 -1 ) 8T 1ii) s it o
0 2 4 20 =305
sl 35,04
7 )
Find the inverseof 4=|1 1 0|and showthat4™' 4=,
2315

Verify that (AB)™ =B'A7'if

D) s s 43
R ROl 4 — ) =z 2P ZEs

~ Verify that (AB)' = B' A"and if

; 1= 1
A=[(l) '; ﬂ and B=|3 2
@) =il

: 2 -1 5 -1\ !
If A=[3 1] verify that (4 ') = (4 )
If A and B are non-singular matrices, then show that
i) (AB)" =B"'A" ii) CAR)R L=A
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3.9 Elementary Row and Column Operations on a Matrix

Usually a given system of linear equations is reduced to a simple equivalent
system by applying in turn a finite number of elementary operations which are stated
as below:

1. Interchanging two equations.
2. Multiplying an equation by a non-zero number.
3. Adding a multiple of one equation to another equation.

' Note: The systems of linear equations involving the same. vanables, are |
‘equivalent if they have the same solution. . : 5%
Corresponding to these three elementary operations, the followmg elementary
row operations are applied to matrices to obtain equivalent matrices.
i) Interchanging two rows
ii), Multiplying a row by a non-zero number
111) Adding a multiple of one row to another row.
- Note: Matrices A and B are equivalent if B can be obtamed by applylng m tum a W

finite number of oW operations on A. 2o

 Notations that are used to represent row opcratlons for I to III are ngen below:
Interchanging R, and R;is expressed as R; & R;.

k times R, is denoted by kR; — R;
Adding k times R; to R;is expressed as R; +kR; — R/

(R! is the new row obtained after applying the row operation).
For equivalent matrices A and B, we write A R.B.
If A BB then B BA Also if A BB and B £C, then ARC. Now we state the
elementary column operations and notations that are used for them.
i) Interchanging two columns C, &C;
i) Multiplying a column by a non-zero number kC, = C;
1i1) Adding a multiple of one column to another columnC; +kC; — C!
Consider the system of linear equations;
x+y+2z=1 :
2x—y+8z=12; which can be written in matrix forms as
3x+5y+4z=-3
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1 erve i) Ik 2e8
2 -1 8||yl=|12 or [xyz]1 -1 5|=[1 12 -3]
35 4f[z] |-3 2 8 4
that is, AX =B (i) X'A' =B’ (ii)
nt b ) x 1
where A=|2 -1 8|, X=|y|and B=|12
| 38554 b4 -3

. A is called the matrix of coefficients.

Appending a column of constants on the left of A, we get the augmented
matrix of the given system, that is,

1gew]ge2 et
2 -1 8 12 | (Appended column is separated by a dotted line segment)
3Siad ;. —3
Now we explain the application of elementary operations on the system of
linear equations and the application of elementary row operations on the augmented
matrix of the system writing them side by side.
x+y+2z=1
2x+-y+8z=12
3x+Sy+4z=-3

W 1D -
|
=t
o0
—
2

5 4 : -3

Adding -2 times the first equation to the By R, + (-2)R, > R, and
!

second and -3 times the first equation to Ry + (3)R, = R;, we get

the third, we get

x+y+2z=1 | - T R A
-3y+4z=10 RO -3 4 : 10
2y-2z=-6 OEe 2IC DIt E=

Interchanging the second and third equations, we have By R, & R;, we get

A b 1T o asE
s b
~3y+4z=10
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Multiplying the secoh_d equation by %. we get By%R2 — R;, we get.

x+y+2z=1 I 1 2 1
y—-z=-3 RIo 1 -1 : -3
Adding 3 times the second equationto ° By R3+3R; — R;, we obtain,
the third, we obtain, :
\ +y+ 22 =] il 2 1
P NYy—-z2=-3 RIO 1 -1 =3
S 1 QGOS0 ]

Thegwen system is reduced to the triangular form which is so called because
on the left the coefficients (of the terms) within the dotted triangle are zero.
' Putting z=1in y—z=-3,wehave y—1=-3= y=-2
Substiliting z =1, y =—2in the first equation, we get
x+(2)+2(D)=1=x=1

Thus the solution set of the given system is {(1, -2, 1)}.

Appending a row of constants below the matrix- A’, we obtain the augmented
10 288833
/RS
matrix for the matrix equation (ii), that is 22058 lnd
31 211229 =35
Now we apply elementary column operations to this augmented matrix.
02 300 R O O
1= S5 I -3 .2

By C, +(-2)C, — C; and

2. 8% 4|-C |2 T4Es=to
C, +(=3)C, - C;

e e e P
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-2l =8 Lirprly 1m3 1
€l2 -2 4|ByC,;oC, C|2 -1 4|By—C,>C
[RIE=GH 0 [I=38010
1 0 O
T ’
€l2 -1 1|ByG+3C,—>C
(1 -3 1

=00
Thus [x y z] [1 1 0]:[1 -3 1]
7 =il

or [x+y+2z y—z zl=01 -3 1]
x+y+2z=1
= y—z=-3
=1
Upper Triangular Matrix: A square matrix A =[a,]is called upper triangular if
all elements below the pnnmpal_ diagonal are zero, that is,
a; =0forall i> j
Lower Triangular Matrix: A square matrix A =[a;]is said to be lower triangular
if all elements above the principal diagonal are zero, that is,
a; =0forall i< j

Triangular Matrix: A square matrix A is named as triang_lilar whether it is upper
triangular or lower triangular. For example, the matrices

0
el
0 1 4|and are triangular matrices of order 3 and 4
oMoe 4 1 50

=123 1
respectwely e ﬁrst mamx 1s upper triangular whlle the second is lower mangular

L__'_
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From A'=A, itfollows that [a}],., =[a;],.

which implies that a;. =a, fori, j=1,2,3, ..., n.

but by the definition of transpose, a; =a fori, j=1,2,3, ..., n.

Thus a; =a;fori, j=1,12,3,..,n

and we conclude that a square matrix A = [a;;]nxn1s symmetric if a; =a ;.

For example, the matrices

T 1 3 2 -1
1983 0SS :
[3 2], h ; ﬁ and 25 1 -2 are symmetric.
& SOE=0)

Skew Symmetric Matrix : A square matrix A =[a;],.,is called skew symmetric or
anti-symmetric if A" =-A.

From A'=-A, it follows that [a;.] =[-a;]fori,j=1,2,3,....,n

which implies that a; =—a, fori,j=1,2,3,....,n

but by the definition of transpose a; =a; fori,j=1,2,3,....,n

Thus —a;; =aj; or a;j =—aj;

Alternatively we can say that a square matrix A =[a;],,,1s anti-symmetric if
a; =-a;.

For diagonal elements j =i, so

a; =—a, or 2a; =0=> a;=0fori=1,2,3,....n
0 -4 1]
For exampleif B=| 4 0 -3|,then
-1 3 0|
O pd sl (0 -4 1
B'=|-4 0 3|=(-1))4 0 -3|=-B
T =30 =l sh W)

Thus the matrix B is skew-symmetric.
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Let A=[a;]be an aXmmatrix with complex entries. Then the nXm matrix
[a; ] where a; is the complex conjugate of a; for all i, j, is culled conjugate of A and

is denoted by A . For example, if

o = = = i ;
e 1 I then A= 3_: ; o 3+i I
20 1+i 20 1+i -2i 1-i

Hermitian Matrix: A square matrix A=[q,],,, With complex entries, is called
hermitian if G)J =A.
 From, G)' = A it follows that E.-j LF[".-;],,,,,WhiCh implies that a; = a, for
1N =1 NS N 1 but by the definition of transpose, c_zl.:. =a, for i, j=1,2,3,....,n.
Thus a; =a; for i,j=1,2,3,..,n and we can say that a square matrix

A =[aﬁ] is hermitian if a, =b"ﬁ fonhsji=152:3:"In

nxn
For diagnal elements, j = i so a; =a, which implies that a,is real for
i=1,2,3,..,n

IS
F le,if A= , th
01:examp i [l+i 5 ] en

i [111' 1;] =~ (a) !:[l-:-i 121 =4
Thus A is hermitian.
Skew Hermitian Matrix: A square matrix A =[a,],,, with complex entries, is called
skew-hermitian or anti-hermitian if (&)’ ==A.
From ()" =-A, it follows that [E,;]m =[-a;]
which implies that 7; =—q, fori, j =1, 2, 3, ..., n.

but by the definition of transpose. @, =a, fori. j=1.2.3..... n.

LRI

Thus —ag;=a; or a;=-ajforij=1,2,3,....,n

and we can conclude that a square matrix A =|[a,],,,is anti-hermitian if a; =-a;.
For diagonal elements j=1i,s0 a, =-a,= a, +a, =0
which holds if a; =0 or a, =iAwhere Ais real
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because 0+0=0 or iA+id =iA—iA=0

=2 =3280

- 0 2+3i
Al—
-2+3i 0

4 (Z)’:[ 0 —2+3i] ;(_D[_zo_ﬁ 2—3;']:_A

, 0 2-3i| .
For example, if A= ,then

2+43i 0 0

Thus A is skew-hermitian.

3.10 Echelon and Reduced Echelon Forms of Matrices

In any non-zero row of a matrix, the first non-zero entry is called the leading
entry of that row. The zeros before the leading entry of a row are named as the
leading zero entries of the row.

Echelon Form of a Matrix: An mXn matrix A is called in (row) echelon form if

i) In each successive non-zero row, the number of zeros before the leading entry
is greater than the number of such zeros in the preceding row,
-ii)’ ' Every non-zero row in A precedes every zero row (if any),

iii)  The first non-zero entry (or leading entry) in each row is 1.
- Note: Some authors do not require the condition (m)i S

01 -2 4 1 2‘ .-“3- 4 e L
The matrices [0 0 1 2|and |0 O 1 2] arein echelon form
00 0 O Q0 OR]
OO 01 -2
but the matrices |0 1 3 —1|and [0 O -1 |are notin echelon form.
0 00 O 0 0 4

Reduced Echelon Form of a Matrix: An mXn matrix A is said to be in reduced
(row) echelon form if it is in (row) echelon form and if the first non-zero entry (or

leading entry) in R;lies in C,, then all other entries of C; are zero.

0 4 1200 _
1 2(and |0 O 1 O |arein (row) reduced echelon form.
0 0 0 0 0 1 L

The matrices

(= Bl < I =)
(=) (=)
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Example 1: Reduce the fpllowing matrix to (row) echelon and reduced (row) echelon
form,

a3l —14-9
1 -1 2 -3
SISl 3. 20
i 31— .9 1 -1 2 -3
Solution: 1 -1 2 -3 R12° 38 1 9 || By R, &R,
& 1 & ol 5 R
[1 -1 2 =3 1 -1 2 -3
RIOMSGENE 5ull1 51 BYR =GR DK o ploG1L (=1 43 |By Li o r!
MR s S A R 5 [0 4002310
1 -1 2 -3 - 188 ORI ()
RO 1 -1 3 |ByR,+(-49R,>R R[0 1 -1 3 |ByR+1R.>R
HORRO0FL —1 00 1 -1
1 0 0 1
R 0 1 0 2 BYRI+(—1)R3—)R;
-0 O 1 andR, +1.R; - R,
1 -1 2 -3 e ) )
Thus |0 1 -1 3 |and |0 1 O 2 |are (row) echelon and reduced (row)
0 0 1 -1 0 01 -1

echelon forms of the given matrix respectively.

Let A be a non—siﬁgular matrix. If the application of elementary row
operations on A:/ in succession reduces A to I, then the resulting matrix is I:A™ .

A
Similarly if the application of elementary column operations on-:-in

I
: oo e
succession reduces A to /, then the resulting matrix is—
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e/
Thus A:IR I: 47" and (i

250 =1]
Example 2: Find the inverse of the matrix A=(3 4 2
10825 =2

2

Solution: 4| =[3
1

-1
2|=2(-8-4)-5(-6-2)-1(6—-4)=-24+40-2=40-26=14
-2

3% B ]

As [A| # 0, so A is non-singular.

: 28 SRR IR O 0
Appending /;on the left of the matrix A, we have |3 4 2 010
1020 = 28 O O ]

Interchanging R; and R;we get..

[0SR 0RO i i =ofad (0F QN
34 2 :01 0/R|0-2 8 :0 1 —3|BYREERDR,
By —%Rz — R;, we get
I 1
19 =2 s S G E e 1 =Y
01 -4:0 —% % RI0O1 -4 :0 ——%— -2— ByR,+(-DR, - K,
: andR +(-2)R, = R
ORI .3 1 1. 0 =2l o
L 2 28
By —R, — R;, we have
[ 1 6 4 ]
10 6 0 1 =2 1000 R U
ol -4 : 0 -L 3 el 0ok fes SlURIMBYRGE GORISIRS
. 12 21 7 14 2 |andR,+4R, >R}
00 1 = = == 00 1 L o dbe L
L 14 240 L 7. 1A
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[8 il
7 i
Thus the inverse of A is t o .—l
1 14 2
gl L
L7 14 2 |
Appending /, below the matrices A, we have
| 25 S
3 4 2
1 2 -2
1 00
010
| 0 0 1 |
Interchanging C,and C,, we get
[25 -1] [-15 2] |
A 4 3 et
1l 2 =2 -2 2 1 220
............... Cloovinmnene| € faneninnens By (-1)C, » C|
1 00 0 01 0 01
010 010 010
IROS QR 18| 0 | F51520.-0; | R0 o
By C; + (=5)C; —> Cy and C; +(=2)C; = Cs, we have
b | .
IR0 0
RO ORI —2 14 7
-2 14 7 A
Rie—8 -3 7 : 1
Sy s g ............... By —C, - C,
14 &
0 01 040y
OSSR 0 1
ERshaR . U 7 10
<
S it e 4

| b
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ByC, +(2)C, = C{ and C; +(-7)C, — C;we have

= —

(oG 1 00
0™ 10 010
=% S2000F 1 6 :
............... o o 1
4 »
E i _ll g_‘ _% _%-andC2+[a-}3—->C2
T4,
52 5[ T
L 7 14 2_ = 7 14 2J
8 A
T
Thus the inverse of A is i —-—3:— —l
7 14 2
L o alon il
7 14 2|

Rank of a Matrix: Let A be a non-zero matrix. If r is the number of non-zero rows
when it is reduced to the reduced echelon form, then r is called the (row) rank of the
matrix A.

B P =
Example3:Find the rank of the matrix 208 T =]
3 1 12 -11

el 25— ai IR 1> EE 3 3
Solution: 2 0 7 -7|R|0 2 3 -1 By R, +(-2)R, = R}
and Ry +(=3)R, — R}

3 1 12 -11 0 4 6 -2

[ =il 20 =3 =10 7=3
ROIE_lBlR_)R'ROIg-lBR+(—4)k—)R’
I$ ) y3 & 2 & ) ¥ &3 2 3
0 4 6 -2 000 O
) e

2°%2 =
R J L .
R o ByR, +1.R, - R|

0 0
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As the number of non-zero rows is 2 when the given matrix is reduced to the
reduced echelon form, therefore, the rank of the given matrix is 2.

SENER L R

IR =285 —3 RN SE=2
| If A=|-2 3 -l|and B=(1 0 -1},
5 -1 0 =288 22

then show that A + B is symmetric.

1 2 0
2. If A=| 3 2 -1|, show that
-1 3 2

i) A+ A' is symmetric ii) A— A'is skew-symmetric.
32 If A is any square matrix of order 3, show that
i) A+ A'is symmetricand ii) A— A’is skew-symmetric.
4. If the matrices A and B are symmetric and AB = BA, show that AB is
symmetric.
5. Show that AA"and A’A are symmetric for any matrix of order 2x3.

Lt
6. HA:[; “],showthat

—i
i) A+ (A)' is hermitian ii) A—(A)'is skew-hermitian.

7. If A is symmetric or skew-symmetric, show that A*is symmetric.

1
8. If A=[1+i],ﬁnd A(A) .

9. Find the inverses of the following matrices. Also find their inverses by using
row and column operations.
o 23 JRes 2 —1 18 =382
DER0S—2" 10 i) [0 -1 3 iii)[2 1 0
C N TR0 2 o =1

.
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10.  Find the rank of the following matrices _
1 -4 -7 3 =1 .53, 0 =]

L SRz D =5 IO
1) +(12105= 675 il iy SO i) | "4 _2 _5
35 e e

3 =4 G = =

3.11 System of Linear Equations
An equation of the form:
ax+by=k : (1)
where a#0,b#0,k #0

is called a non-homogeneous linear equation in two variables x and y.
Two linear equations in the same two variables such as:

ax+by=k,
a,x+b,y =k,

@)

form a system of non-homogeneous linear equations in the two variables x and y if
constant terms k,,k, are not both zero.

If in the equation (i), k=0, that is, ax+by=0, then it is called a
homogeneous linear equation in x and y.
If in the system (I), k, =k, =0, then it is said to be a system of homogenous
linear equations in x and y.
An equation of the form:
ax+by+cz=k , (i)
is called a non-homogeneous linear equation in three variables x, yand zif a #0,b 0,
¢ #0and k # 0. Three linear equations in three variables such as: -
ax+by+cz =k
a,x+b,y+c,z =k, ; ....(aD)
a,x+b,y+c;z =k,
forma system of non-homogeneous linear equations in the three variables x, y and
3, if constant terms K, k, and &, are not all zero.
If in the equations (ii) kK =0thatis, ax+by+c¢cz=0.
then it is called a homogeneous linear equation in x, yand z .
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If in the system (II), k, =k, =k, =0, then it is said to be a system of
homogeneous linear equations in x; yand z.

A system of linear equations is said to be consistent if the system has a unique
solution or it has infinitely many solutions.

A system of linear equations is said to be inconsistent if the system has no
solution.

The system (II), consists of three equations in three variables so it is called
3x3linear system but a system of the form:

x=y+2z =6| "

2x+y+3z = 4}
is named as 2 X3 linear system.
Now we solve the following three 3x3linear systems to determine the criterion for a
system to be  consistent or for a system to be inconsistent.

2x+5y—2z=35 l x+y+2z=1
3x+4y+2z=11 ...(1), 2x—y+7z=11 2)
x+2y-2z=-3] 3x+5y+4z=-3
x=y+2z=1 ]
and 2x-6y+5z=7 ; ...(3)
3x+5y+4z=-3]

The augmented matrix of the system (1) is
D ESAI— 1S
3N 1]
1 2 =2 : =3
We apply the elementary row operations to the above matrix to reduce it to the
= €quivalent reduced (row) echelon form, that is,

22 =l e R 3
34 2 : 11|R|34 2 : 11|ByR &R,

R D eallh 2.5 —1 .5

2 5 -1:

I, 2 -2 ::3 [l Eauii g
RI0O -2 8 : 20|ByR,+(-3)R, >R, R|0 -2 8 : 20|By g, +(2R - K
5 _ O il LE BT

T



By —%Rz — R;, we get

1 2..22 Be=ailiif ol g T ,
0 1 =4 ; 10| R[0L =4y 20BNt
01 3 : 11] (o0 7 : 21 [andRy+ELR SR,

1

0 : —1|  ByR+(-6)R,~K),
0 : 2| andR,+4R,—FR,
1

IPEORGERN G - 10
RI0O 1 -4 : -10|By =R, > R; R|0 1
oMot 7 00
Thus the solutionis x=-1,y=2and z=3.

The augmented matrix for the system (2) is

e I D |

25— 17 ]

35 4 =3

Adding (-2)R, to Ry and (=3)R, to Rz, we get

15 2= ] 1. 1" RO
28—1 "7 gl RlIO -3 3 : 9
SRSt 4 Soa—3 0 2 -2 : -6

L) B RN | 10 3 : 4 ' ’
A2 2

0 2 -2: - 00 O : O |andR+(-2)R,>R;
The system (2 ) is reduced to equivalent system :
x+3z=4
y-z=-3
0z=0

The equation 0z = Qis satisfied by any value of z.
From the first and second equations, we get
x==37zF4\u s (a)
and Vi= 2= 3 o e e (b) >
As z is arbitrary, so we can find infinitely many values of x and y from
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equation (a) and (b) or the system (2), is satisfied by x=4—-3¢,y =¢—3and z": ¢ for

any real value of ¢. :
Thus the system (2) has infinitely many solutions and it is consistent.
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18102 ]
The augmented matrix of the system (3)is {2 -6 5 : 7
_ ‘ 308 o4 3
- Adding (-2)R, to R, and (-3)R, to R,, we have
=12 ] T )|
DECeE S aT RIO -4 1-: 5
85 She4 wih=3 (OBR8T =02 5= 6
- : ok L
110 ] G g
IR 1 1 . 5|ByR+IR >R
RIO 1 —— : —=|By - 2 GRIOT == Y AR TR
£ LT y 4R;—>Rz =~ 4 4| andR,+(-8)R, o R}
() B3 S ) OROSEONS: 4

Thus the system (3) is reduced to the equivalent system

ol
4

4
AN ]

T
0z=4

The third equation 0z =4has no solution, so the system as a whole has no
solution. Thus the system is inconsistent. - ' o O

We see that in the case of the system (1), the (row) rank of the augmented
matrix and the coefficient matrix of the system is the same, that is, 3 which is equal'to
the number of the variables in the system (1).

Thus a linear system is consistent and has a unique solution if the (row) rank
of the coefficient matrix is the same as that of the augmented matrix of the system. .

In the case of the system:(:2), the (row) rank of the coefficient matrix is the
same as that of the augmented matrix of the system but it is 2 which is less than the
number of variables in the system (2).

Thus a system is consistent and has infinitely many solutions if the (row)
ranks of the coefficient matrix and the augmented matrix of the system are equal but
the rank i is less than the number of vanables in the system.

) In the case of the system ( 3), we see that the (row) rank of the coefficient
matrix is not equal to the (row) rank of the-augmented matrix of the system.
- Thus we conclude that a system is inconsistent if the (row) ranks of the
coefficient matrix and the augmented matrix of the system are different.
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3.11.1 Homogenegyg Linear Equationg |
Each equation of the system of following linear €quations:

X +a,x, tagx, =g ceenees (i)
X +ay,x, tanx, =0 (ii)
X +ay,x, + GaXy =0 .. (iii)

is always satisfied by x, = 0,x, =0ang *3 =0,50 such 3 System js always consistent.

The Solution 0,0, 0) of the above homogencous €quations (j), (ii), and (iii) is called
the trivia] solution, Any other Solution of €quations (j), (i) and (iji) other than the

\ &7 0
or (A"A_)X =0 = x =0 Le, [x, [=] o
5% 0

Multiplying the equationg (), (ii) and (iii) by 41,4, and A;, fespectively ang
adding the Tesulting  equatjons (where A, 4, and 4y are  cofactors of the
corresponding elements of A), we have
(a4, ta, 4, tay4,)x, t(a,4, tay4, ta,4,)x, t(a;4,, +a23A21 ta54,)x, = Q'
that is, |Alx, <. Similarly, we cap get IA[xz =0and [4lx, =0

For a non-triyja Solution, at least one of *15%, and x, js different from Zero.
£t X, # 0, then from [A[.r,:O,wehave l4=0. ' '

For €xample, the‘system : |
Ttn+x, = (09)
=% +3x, =g (In

% +3x-x =0 (I
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has a non-trivial solution because
1SS R0 0
-2 2
lAl=it -1 3|=p@ -2 2 =) )=0
TR e ]| TR D,

Solving the first two equations of the system, we have
2x,+4x, =0 (adding (I) and (II))

= X = =2x, ,
and 2x,—2x,=0  (subtracting (II) from (I))
= X = X

Putting x, =—2x, and x, =x, in (III), we see that (-2x;)+3(x;)—x, =0,
which shows that the equation (I), (IT) and (III) are satisfied by
x, =—2t,x, =t and x, =t for any real value of ¢.

Thus the system consisting of (I), (IT) and (III) has infinitely many solutions.
But the system

xtx,+x, =0 _
X, —x,+3x; =0; hasonly the trivial solution,
X, +3x, —2x, =0
because in this case !

TR TSR] S | W [ =0 50
A= -1 3|=i -2 2|=

rz‘z
DI RR0 | R 5 s

\:6—4=2¢0

Solving the first two equations of the above system, we get x; =—2x; and
X, = X, . Putting x; =—2x,and x, = x, in the expression.
X, +3x, —2x,, we have — 2x, +3(x,) — 2x, = —x,, that is,
the third equation is not satisfied by putting x, = —2x, and x, = x;but it is satisfied
_ onlyif = 0. Thus the above system has only the trivial solution.

3.11.2 Non-Homogeneous Linear Equations

Now we will solve the systems of non-homogeneous linear equations with
help of the following methods.

l) Using matrices, thatis, AX =B — X = A'B.
1) Using echelon and reduced echelon forms
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iii)  Using Cramer’s rule.

—=2x, 4+ =4
Example 1: Use matrices to solve the system 2x, —3x, +2x,=—6
: 2x 20+ =5
Solution: The matrix form of the given system is
110 =2 1iiEx =4
2. =30 2= =6
{250 2705 || e 5
or AX =B (1)
[1 -2 1] X, -4
where A=[2 -3 2|, X=|x,|and B=| -6
2.2 11 % 5
1 -2 1 s =248 :
As lA=2 -3 2/ =j0 1 o . By R, +(-2)R, > R}
207 29 2001
1
=)™, [=0-2)=-1, thatis,
|4| # 0, so the inverse of A exists and (i) can be written as
X=A"B ' (ii)
Now we find adj A.
—=70208010
A, =-T,4,=2,A,=10,4, =
Since [A,.. =4 -1 -6[,1 " e
ihe L ; 1} [ Ay =-14,,=-6A4, =1, A,z-OAn—l
-7 4 -1
So' adjA=[2 -1 0
10 -6 1 _
R B M
and A"‘=——ad_]A—— 2. =15 08| =] =2 1ReE(

4 10 =6 1 [E=108 6 ]
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=1 20
The augmented matrix of the system (3)is [2 -6 5 @ 7
_ 3 S 4 i =3
- Adding (-2)R, to R, and (-3)R, to R,, we have
LR —1502 =5 | R0 o 7
2 =6'5 1 7 RlOL=4 1:: 5
3% 50 4 e 0f%ss o it g
Mo
1 -1 2 15 41 4;
1 . 1 : ByR +1.R, >R
R 0 1 e e B L e B =gl L R 0 l —_ == Yy i 2 1 3
i 4 4 y S lis s 4 4| andR,+(-8)R, 2 R,
0 8 -2 : -6 0 0_ 0 : 4

Thus the system (3) is reduced to the equivalent system

il ol
AT
i s

SETE Ty
“0z=4

The third equation 0z =4has no solution, so the system as a whole has no -
solution. Thus the system is inconsistent. |

We see that in the case of the system (1), the (row) rank of the augmented
matrix and the coefficient matrix of the system is the same, that is, 3 which is equal’to
the number of the variables in the system (1).

Thus a linear system is consistent and has a unique solution if the (row) rank
of the coefficient matrix is the same as that of the augmented matrix of the system.

In the case of the system:(-2), the (row) rank of the coefficient matrix is the
same as that of the augmented matrix-of the system but it is 2 which is less than the
number of variables in the system (2).

Thus a system is consistent and has infinitely many solutions if the (row)
ranks of the coefficient matrix and the augmented matrix of the system are equal but

_the rank is less than the number of vanables in the system.
' In the case of the system ( 3), we see that the (row) rank of the coefficient
matrix is not equal to the (row) rank of the- augmented matrix of the system.
. Thus we conclude that a system is inconsistent if the (row) ranks of the
oefficient matrix and the augmented matrix of the system are different.
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3.11.1 Homogeneous Linear Equations
Each equation of the system of following linear equations:

a,x, +a,x, +tayx, =0 ..(>30)
A, % FanX; Fay X = 08 (i1)
Ay X + Ay Xyt @ Xy =000 (iii)

is always satisfied by x, =0,x, =0and x, =0,so such a system is always consistent.

The solution (0, 0, 0) of the above homogeneous equations (i), (ii), and (iii) is called
the trivial solution. Any other solution of equations (i), (ii) and (iii) other than the
trivial solution is called a non-trivial solution. The above system can be written as

0
AX =0, where O=| 0
0
If |A| # 0, then A is non-singular and A™ exists, that is,
AT'(AX)=A"'0=0
i[53 0
or (A"A)X =0 = X =0, ie,|x |=|0
- X, 0

In this case the system of homogeneous equations possesses only the trivial
solution. : '

Now we consider the case when the system has a non-trivial solution.
Multiplying the equations (i), (ii) and (iii) by A,;,A,, and A, respectively and
adding the resulting equations (where A,;,A, and A, are cofactors of the
corresponding elements of A), we have _
(@A), + a5 Ay +ay Ay))%, + (@A + 8y A, +085A0)X, +(a134) +ay A, + 854X, = q'
“ that is, |A|x, = 0. Similarly, we can get |A|x, =0and |A|x, =0
For a non-trivial solution, at least one of x;,x, and x,is different from zero.
Let x, #0, then from |Alx, =0, we have |A|=0.
For example, the system
X oy =) @
X —x,+3x;, =0 - (1D
x +3x,—x; =0 (I
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] wifi=4 7 =4 1]|[-4] [-28+24+5
Thus |x, [=A7|=6|=[-2 1 0||-6[=| 8-6+0 |, ie,
L 5 -10 6 ~-1f| 5 40-36-5
_-‘71-‘ 1
x, |=| 2
ol L=

Hence x; =1,x, =2 and x; =-1.
Example 2: Solve the system;
x +3x,+2x, =3
4x, +5x, —3x; =3¢,
3x; = 2x, +17x; =42

by reducing its augmented matrix to the echelon form and the reduced echelon form.
- Solution: The augmented matrix of the given system is

fie= U (53
4 5 -3 : -3
3 -2 17 : 42

We reduce the above matrix by applying elementary row operations, that is,

15 -3 24 semand
S SNEDL S8 )
AMES WSl RO == 5| BYRACHR SR,
3 -2 17 : 42 b2l 11 a3 andR, +(-3)R, = R!

14530, 2. a3
R[0 —-11 11 : 33 |Byr o=,
[0F =78 =151

103fo s @

[RaBEEou: =13 :
0 .1 -1 : -3 By(_}_]ﬂz_ng 0 1 -1 : -3 |ByR,+7R, > R;
0R=7. =11 =15 00 -18 : -36

P o)

ORISR =3 By(-———]k =R
0 oR

L)

=

The equivalent system in the (row) echelon form is
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x,+3x, +2x, =3
Xy = X3 ==3
X, =2
Substituting x, =2 in the second equation gives: x, -2=-3= x, =-1
Putting x, =—1and x; = 2in the first equation, we have

x,+3-D+22)=3=>x, =3+3-4=2-

Thus the solutionis x, =2,x, =—l'and x, =2
13 2.¢083
Now we reduce the matrix ([0 1 -1 —3 | to reduced (row) echelon form, i.e.,
0 p0i=11:, 2
30 ONN=S 1RSI 12
01 -1:-3|R|I0O1 =1: - By R, +(-3)R, > R|
00 I 05051 58:%2 .
I ON0 S D. ;
00 I8 2 and R, +1.R; > R;
The equivalent system in the reduced (row) echelon form is
x, =2
x, =—1
Xy =2

which is the solution of the given system.
3.12 Cramer’s Rule
Consider the system of equations,
4,14 £.01 % £ a3k = b
Ay X, + AyX, +ayX; = b, . (D
3% + Ay X, +ayX = by o
These are three linear equations in three variables x;,x;,x3 with coefficients and
. constant terms in the real field R. We write the above system of equations in matrix
form as: i AXe= B (2)

- SO E : b
where A=[a;lys, X=|x, | and" B=|b

X . b,
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We know that

thc mamx _equation (2) can be written as: X = A~ 'B (if A exists)
Note: A™(AX)# BA™

We have already proved that A™ = 2.3 adj A and

|4
All AZI A3]
adjA = [Aij]m A, Ay A, G A,;- =A ,—,—)
A; Ay Ay,
X 1 Au Ay Ayl b 1 Ab +A,b, + A b,
Thus | x, |A| Ay, b, |= —A— Apb +Ayub, + A,,b,
Xy A]; A,y b Atabl +Azsbz + A33b3
Ab + A, b, + A, b,
X 4]
ie, | x, [= Apb + Ay, + Ayb,
; 4
2 Apsb) + Ayb, + Ayb,
I 4]
b a, a4
b, ay a,
Hence oy b Au +b2A21 +b A31 b3 a3 a3 (i)
& 4] ||
a, b a;
a, b, ay

b A +b2A22 +b A;z ay;, by, a

e e st et o1

X, _bA;+b,Ay+hA,; |y a, b

= (i)
4] e
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The method of solving the system with the help of results (i), (ii) and (iii) is
often referred to as Cramer’s Rule.

3x, +x,—x; =—4
Example 3: Use Crammer’s rule to solve the system. x, +x, —2x, =4

3 1 -1
Solution: Here [A|=|1 1 -2/=3(-1+4)-1.(-1-2)-1.(2+1)
-1 2 -1
=9+3-3=9
-4 1 -1
AR =
1 -2 Il a1y = o Cs
S0t g _ 41+ -1(4+2) = 1(-8-1)
9 9
2125649 I
9 9
3. -4 -1
-4 -2
oot 1 S 3(4+2)+4¢1-2)-10-4)
: 9 9
5 185126 5R00
9 9
3 1 -
b i
Lol 2 1] 30+8)-10-4)-4Q+])
j 9 9
_27+3-12 187
9 9

Hence x, =-lLx,=1x,=2
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1. Solve the following systems of linear equations by Cramer’s rule.
2x+éy+z=3 z 2x;,—x;, +x3 =95 - 2x;, —x, +x; =8}
i) 3x—-2y—-2z=1} ii) 4x, +2x, +3x, =8} iil)) x +2x, +2x; =6
Sx+y—-3z=2 3x, —4x, —x; =3 X =2x, =Xy =1
2. Use matrices to solve the following systems: ,
x=2y+z=-1 2x,+x, +3x; =3 x+y=2
1) 3x+y—2z=4 i) x+x-2x,=0 piii)) 2x—z=1
y—z=1 =3x, —x, +2x; =4 2y—-3z=-1
3. Solve the following systems by reducing their augmented matrices to the
echelon form and the reduced echelon forms. :
X =2x, —2x;=-1 X+2y+z=2 X +4x, +2x, =2
) 2x t3x, Fxy=100001) 2x+ y+2z=—1¢ iil)) 2x, +x,—2x; =9
Sx; —4x, —3x; =1 2x+3y—z=9 3x, +2x, —2x, =12
4.  Solve the following systems of homogeneous linear equations.
x+2y—2z=0) X, +4x, +2x, =0 :il—2x2—x3 =0
) 2x+y+5z=0¢ ii) 2x,+x,—3x,=0p il)) x,+x,+5x,=0
5x+4y+8z=0 3x, +2x, —4x; =0 - 2x,—x, +4x,=0
S. Find the value of A for which the following systems have non-trivial solutions.
Also solve the system for the value of 4. .
x+y+z=0 X +4x, +Ax, =0
i) 2x+y—4z=0 i) 2x +x,-3x,=0
 x+2y-2z=0 3x, +Ax, —4x, =0

6. Find the value of A for which the following system does not possess a unique
solution. Also solve the system for the value of 1.
X, +4x, +Ax; =2
2x, +x, —2x; =11
3x, +2x, —2x, =16
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4.1 Introduction

A quadratic equation in x is an equation that can be written in the form
ax’ + bx + ¢ = 0; where g, b and c are real numbers and a # 0.

Another name for a quadratic equation in x is 2nd Degree Polynomial in x.
The following equations are the quadratic equations:
i) X#-7x+10=0; a=1,b=-7, c=10
i) 6X+x—15=0; a=6,b=1, c¢=-15
iii) 4%+5x+3=0; a=4,b=5  c=3
iv) 3x*—x =0; a=3,b=-1, c¢c=0
v =4 a=1,b=0, c=-4

4.1.1 Solution of Quadratic Equations
There are three basic techniques for solving a quadratic equation: .
i) by factorization. A
ii) by completing squares, extracting square roots.
iii) by applying the quadratic formula. .
By Factorization: It involves factoring the polynomial ax* + bx + c.
It makes use of the fact thatif ab =0, thena=0 or b=0.
For example, if (x—2) (x—4)=0, theneither x-2=0 or x—4=0.
Example 1: Solve the equation Z-Tx+10=0 by factorization.
Solution: ¥-Tx+10 =0
- x-2)(x-5) =0
. either x=2/= 0 = s0="2
or x._-5=0‘ = x=5
the given equation has two solutions: 2 and 5
: solutmn set = {2 5}‘ IBTIAR Y
: Note The solugons otfan equafﬁ n are also called its root
2 and 5 are roots of x* — 7x + 10 0




I A Texthook of Algebra and Trigonometry

By Completing Squares, then Extracting Square Roots: Sometimes, the quadratic
polynomials are not easily factorable.

For example, consider X +4x—437=0.

It is difficult to make factors of x* + 4x — 437. In such a case the factorization

and hence the solution of quadratic equation can be found by the method of
completing the square and extracting square roots.

Example 2: Solve the equation x* + 4x — 437 = 0 by completing the squares.
Solution: X +4x—437=0

= x2+2(%)x= 437

Add (% )2 = (2)* to both sides
L +4x+(2)2=437+ ()’

= (x+2)°=441

X+2= i‘\lm = i- 21

x=121-

x=190rx=-23

Hence solution set = {-23, 19}.

U

U

By Applying the Quadratic Formula: Again there are some quadratic polynomials
which are not factorable at all using integral coefficmnts In such a case we can
always find the solution of a quadratic equation ax” + bx + ¢ = 0 by applying a

formula known as quadratic formula. This formula is applicable for every quadratic
equation.

Derivation of the Quadratic Formula
Standard form of quadratic equation is
ax* +bx+c=0, a#0
Step 1. Divide the equation by a

b ¢
x2+-ax+a =0
Step 2. Take constant term to the R.H.S.

x2+2 g
a*~ "a
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Step 3. To complete the square on the L.H.S. add (5% Jz to both sides.

2. b _b.z__ﬁ ¢
A TP T

T, b\ 2bi=dac
= g\t on| e

Hence the solution of the quadratic equation ax” + bx + ¢ =0 is given by

— b /b — 4ac
g 2a
which is called Quadratic Formula.
Example 3: Solve the equation 6x> +x—15=0 by using the quadratic formula.
Solution: Comparing the given equation with ax® +bx +c =0, weget,
a=6, b=1,c=-15
The solution is given by
=D A[b* - 4ac
= 2u
el 1/12 —4(6)(-15)
) 2(6)
-1+4361 _-1%19

12 12
e x-_1+19 Orx_—l—-l9
12 LD 3 s
x=—;— or xz_Ts' Henccsolutionset={5’§'

Example 4: Solve the 8x*— 14x—15=0 by using the quadratic formula.
Solution: Comparing the given equation with ax? +bx+c =0, weget,
a=8, b=-14, c==15

141

J
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11.
13.

15.

By the quadratic formula, we have

—bixlb1—4ac
X = 2a
=14+ 14 -4®) (- 15)
%= 2(8)
14+1[676 14+26
e 14 + 26 -5
o eitherx = = x=—
16 3
14 =26 _3
orx = 16 = XxX=—
- SES)
Hence Solution set = {2 = 4}
. Exercised.l

Al

_ Solve the following equations by factorization:

3 +4x+1=0 2. x*+7x+12=0
9x* — 12x—5=0 4. x?—x=2
x(x+7) = 2x—1) (x+4)

ﬁ+%=%;x¢—l,0

1 2

¥l F x92 T xS Nt hisd

s bis paenzLy 1
el byl ST

Solve the following equations by completing the square:

¥-2x-899 =0 | 10. X +4x-1085=0
X +6x—567 =0 © 12, AP -3x-648 =0
X¥-x—1806 =0 14. 2x*+12x-110=0

' Find roots of the following equations by using quadratic formula:

5¢—-13x4+6 =0 16. 4f+7x-—1;0

| | |
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17. 15x*>+2ax—a*=0 . 18.  16x*>+8x+1=0
19. x-a)(x=-b)+x-b)(x-c)+(x-c)(x—a)=0
20, (@a+b)xX*+(@+2b+c)x+b+c=0

4.2 Solution of Equatlons Reducible to the Quadratlc

Equation

There are certain types of equations, which do not look to be of degree 2, but
they can be reduced to the quadratic form. We shall discuss the solunons of such five
types of the equations one by one.

Type I: The equations of the form: a’+bxX +¢c=0; a#0
Put x" = y and get the given equation reduced to quadraticequation in y.

1 1
Example 1: Solve the equation: x2— x*—6=0.
1 1
Solution This given equation can be written as (x*)*—x*-6=0
1
Let x* =y
The given equation becomes
Y¥-y-6 =0

= (-3)(+2)=0
= y=3, ; or y=-2
< 1 £1535 b i
Xi=3 x4==2
= x= 3 = x =(-2)*
= x= 81 =Ex =16

Hence solution set is {16, 81}.

TypeIl:  The equation of the form: (x +a) (x + b) (x + é) x+d)=k
where a+b=c+d

Example 2: Solve (x—7) (x—3) (x+ 1) (x+5)— 1680 =0
Solution: x—-7)(x—-3)(x+1)(x+5)-1680 =0
= [-DE+9)][(x-3)E+1D]-1680 =0 (by grouping)
= (*-2x-35) (*-2x—3)-1680=0 |
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Putting x* — 2x = y, the above equation becomes
(y—-35)(y—3)—1680=0

= y —38y+105-1680=0

= ' -38y-1575=0

38 +1/1444 + 6300 =S8 +/7744

Y= ) 2 (by quadratic formula)
_ 3888
)
= y=63 or y=-—25.
= *-2x=63 =x-2x=-125
= ¥-2x-63 =0 =x-2x+25=0
= x+7NDx=-9 =0 2 +[4 - 100
= x=-Torx=9 = 2
: _ 2%+/-96
= 2
=—JLH; 81 1i6i

=x= 1+ 2-Jgior xileJgi

Hence Sofution set={-7,9,1+2 \]E i 1—2\[3 i}
Type III: Exponential Equations: Equations, in which the variable occurs in
exponent, are called exponential equ;ltions. The method of solving such equations is
explained by the following examples.

Example 3: Solve the equation: 2% ~3.2"2+32=0
Solution: 2%-32%24+32 =0

= 2%-322.2°+32=0

= 2¥-122°+32 =0

= Y-12y+32 =0 (Putting 2" =)
G-8) -4 =0 '

U
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y=28 or y=4

=
= 2'=8 =2" =1
= 2°=2 = 2" =27
= x=3 _ =>x =2

Hence solution set = {2, 3}.
Example 4: Solve the equation: 4'** + 4™ = 10

Solution: Given that ;
4]+.¥ + 4]-1' = 10 !
= 44'+447=10

, ; £ = 1
Let 4' =y =>4_"=(4I)[=yl=;

The given equation becomes
4
4y + = 10 =0

= 4}12—10y+4=0

= 2y’-5y+2 =0

e 5+25-4@)@) 5%y9 5+3
= = 4 =

2(2) 4
_ 1
= y=2 or Y=o
4" =2 ool
= 2%=2! =2
= 2x =1 = 2¥=2"
1 = 2x=_1]3
= x_-—.z‘.‘
: Loyl
Hence Solution set = 2= 2

Type IV: Reciprocal Equations: An equation, which remains unchanged when x is

L. : :
replaced by 7, is called a reciprocal equation. In such an equation the coefficients of
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the terms equidistant from the beginning and end are equal in magnitude. The method
of solving such equations is explained through the following example:

Example S: Solve the equation
X3+ 4% -3x+1=0;

Solution: Given that:
x'=3r+ 4 -3x+1=0

1
= x2-3x+4-%+x—3=0 (Dividing by x%)

= (xz+%)—3[x+ﬂ+4=0 (1)
Let x40 =y = 2+ = [x+1f 22522
tx+x —y = +x2_ x+x -— ,_y._

 So, the equation '(1) reduces to
y¥—-2-3y+4 =0

= y-3y+2 =0
= (y-2(-1) =0
= y =2 or y=1
= x+i =7 = x+%=1
= #-2%+1 =0 = X—x+1=0
= =1?% =0 1+/1-4
= (@-1x-1)=0 e 2
=. x=1,1 ' 1+4/-3
= X = 2
1++/-3
Hence Solution set = {1,42E
Solve the following equa_tins:
1 -6218=0 _ 2. x?-10=3x"
3. 2-9r+8=0 N 4. 8°-19x-27=0

i T R |
5. X+8=60 | 6 GHDE+) @+ x4 =24
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7: (gc 1) (x+5) (x+8) (x +2)-880=0 8. (x-5) (x-7)(x+6)(x+4)—504 =0

9. (x=1(x=2)(x=8) (x+ 5 +360=0 10. (x+1)(2x+3)(2x+5)(x +3) =945
Hint: (x+1)(2x+5)(2x+3)(x+3) =945

1. @x-7E*-9)@2x+5)-91=0'  12. (+6x+8)(*+ 14x+48) = 105
13. (7 +6x—27)(xa=2r-35)=335 14; 422 — 925 =0

TITIT

15.. 22+27%5_90=0 16. 4-32*4+128=0
17. 3*7'-123+81=0 18. (x+i)2—3[x+ﬂ—4=o
19. Pex—d+r+5=0 20 “+3x+1)=0

. X +x-— +_\_+_\_3_ . T3 + x+x =
21, 2x*-3x —x* -3x+2=0 22. 2x'+3° -4 -3x+2=0
23.  6x' =35 + 62 —35x+6=0 24. x4—6x2+10—%+x_14=0

- Type V: Radical Equations: Equations involving radical expressions of the
variable are called radical equations. To solve a radical equation, we first obtain an
equation free from radicals. Every solution of radical equation is also a solution of the
radical—free equation but the new equation have solutions that are not solutlons of the -
original radical equation.

Such extra solutions (roots) are called extraneous roots. The method of the
solution of different types of radical equations 1s illustrated by means of the
followings examples:

i) The Equations of the form: I(ax® + bx) +m \Iax’ +bx+c=0
Example 1: Solve the equation

3+ 15x =202 +5x+ 1 =2
Solution :Let \[X* + 5x + 1=
= X+5x+1 =y2
= F+5x=y"—1

= 3x*+15x=3y*-3

The gi\;en equation becomes 3y*—3-2y= 2
= 3f-2-5 =0 |
= @By-5@+1)=0
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3 ok
= y=73 or y=-—
- IR =% = '\/1x2+5x+1 = —1
= X+5x+1=1
a 25
= X +5x+1 =T
> = X+5x=0
= 9x,+45x+9 =25 = xx+5)=0
= 9% +45x-16 =0 ) = 0lor. "x =5
= (Bx+16)3x-1)=0

B e
x—30rx "-—-‘—3

On checking, it is found that 0 and — 5 do not satisfy the given equation.
Therefore 0 and =5 being extraneous roots cannot be included in solution set.

: it i3
Hence solution set = {3 , — 3}.

ii)  The Equations of the form: \x +a+\x+b = \x +¢

Example 2: Solve the equation:  \x+8+x+3 = \/12x+ 13
Solution: \/x + 8 +\x+ 3 = \/12x + 13

Squaring both sides, we get

x+8+x+3+2\x+8 \x+3 = 12x+ 13
= 2\x+8\x+3 =10x+2
= m=5x+l
Squaring again, we have
X+ 11x+24 = 257 + 10x+ 1
= 24X-x-23=0
= (4x+23)(x-1)=0

L
X =-5 orx=1

On checking we find that —-ﬁ is an extraneous root.

Hence solution set = {1}.
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iii)  The Equations of the form: \/ax® + bx + ¢ +\px’ + gx + r=~[lx’ + mx +n
where ax” + bx + c, pxz + cjx + rand Ix* + mx + n have a common factor.
Example 3: Solve the equation: [ + 4x — 21 + \[x* —x— 6 =[6x* — 5x— 39
Solution: Consider that:
P+4x-21= (x+7)x-3)
-x-6 = (x+2)(x-3) - B
6x* = 5x—39= (6x+ 13)(x—3)

The given equation can be written as

| G+ 7= 3) + (e + 2)(x— 3) =~[(6x+ 13)(x - 3)
= \x-3[\x+7+\x+2-[6x+13] =0

Either\[x—3=0o0r\x+7+\x+2—-4/6x+13=0 i

‘\/x—3=0 =2 x-3=0=2x=3

Now solve the equation \[x + 7 + \[x + 2 — \_Iﬁx +13=0

= \x+7+\x+2 =+/6x+13

= x+T7T+x+2+ Z\f(x +Dx+2)=6x+13 (Squaring both sides)

= NG+TNx+2)=4x+4

= \P+%+14 =2x+2

= xX*+9%+14 = 4°+8x+4 (Squaring both sides again)
= 3x*-x-10 = 0

= Bx+5x-2)=0

5
= x=_3,2

Thus possible roots are 3, 2, —% :

: Soaed ST :
On verification, it is found that ——3‘ 1S an extraneous root,

Hence solution set = {2, 3}
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iv)  The Equations of the form: \/ax’ + bx + ¢ +\[px* + gx +r=mx +n

where, (mx + n) is a factor of (ax” + bx + ¢) — (px” + gx + 1)

Example 4: Solve the equation: \] 3¢ -Tx-30- \f 2% -Tx-5=x-5

Solution: Let '\l 3¥-7x—30 = a and \[2¥’=7x=5 = b
_Now a-=bi=(3x>—Tx—30)— (2x*— Tx-5)
02—b2=x-?—25 (l)
The given equation can be written as: .
a-b=x-35 (11)

(a+ :)_(c;) —b) (x+ f)_("s =) [From (i) and (ii)]

= a+b=x+5
VL [From (ii) and (iii))
= a=x ‘
3 -7x=30= x
= 32-Tx—30 = 2
= 2¢-7x-30 =0
= (x+5x-6)=0

)

-On checking, we find that — % is an extraneous root.

Hence solution set= { 6 }

s __.-\\;
g equations:

. Solve the followin - :
1. 3% +2%-\32+2x—1=3 2. A-F-T=x- \/_2"2_3x+2

3. A2x+84\x+5=7 4. \Bx+4=2++2x-4

S0 AxtT+\x42=Ax+13 - 6. \Prxrl-Frx-1=1
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7. AP +2x=34F +Tx-8=1/5(% +3x—4)

8.  \2¢-5x—3+32x+1=12F+25x+ 12
9. A\[32—5x+2+[62—1lx+5=\52—9x+4

10.  (x+4)(x+ 1) =[P +2x—15+3x+31

1. 3@ -2x+9+3¢-2x—4=13

12 52+ Tx+2-4*+7x+18=x-4
4.3 Three Cube Roots of Unity

Let x be a cube root of unity

x =i =@y
N =11
= X-1=0

= G-DEP+x+1)=0
Either x—1 = 0= x=1

or X+x+1=0

-1 :t'\ll.-—4 _—1 :t\f—_.?a
2z T 2

X =
=; x=_14*2& (o \F1=i)

Thus the three cube roots of unity are:
“1+8i  -1-1[3i
18 3 an 3

d

_ ' By complex root we mean, a root containing non-zero imaginary part.

A
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4.3.1 Properties of Cube Roots of Unity

i) Each complex cube root of unity is square of the other
C1+aBi) P+ (B +2cDGBE)
e (1+2 3,] i )+(\F:)4+ D(H/31)

]

[EBENBi —2=n[3i
4 TeL4

o

o (0] - [Cp]

@2+ (30 + QWE30)
4

1-3+2\3i —2+2\[3i
z -

ot

4

_—1+Bi

2
_ Hencc each complcx cube root of umty 1s square of the other.

ETACA EA ISR, L RS R

ii) The Sum of all the three cube roots of umty is zero i.e., 1 + 0+ af 0
Proof: We know that cube roots of unity are

1 —1+3131 -1-—'_\!3:

_ Sum of all the three cube roots = 1 + = *'2\’5" =l ‘Zﬁf

2-1+Bi-1-13i
= 2

=405
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If m:iﬂi@,menah%@

Hence sum of cube roots of unity =1+ @0+ @ =0
ili)  The product of all the three cube roots of unity is unity i.e., @’ =1

Proof: Let ﬁ& and i?& =a’

2 =

1+\BiY=1-13i
E D)
~ 4
1-(=3) 1+3
= {1]J = 1

Product of the complex cube roots of unity = @’ = 1. ‘
iv) For any ne Z, o' is equivalent to one of the cube roots of unity.

With the help of the fact that @’ = 1, we can easily reduce the higher exponent
of w to its lower equivalent exponent.

eg. ot = @.0 =NioN=0
@ 0.0 = 1.0 =
o = (@) (12 =1
o = (ml)s = (l)s =]
o = (@) =0 (aby =il

Example 1: Prove that:( + y°) = (x + y)(x + @y)(x + @'y)
Solution : R H.S = (x + V)(x + @v)(x + @)

=(rty)lx Hoto)yxte))] _
=@+ )T =+ ) =0y (- =1, 0+a?=-1)
=LH.S.

Examplez Prove that: (-—1+\I—) +(—l—\[_) -—16

Solution: LH.S = (-1 +/=3) +(—1—\[‘)
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g 1+~/3)|° JEAE N
[2( 2 ]] *[2[' 2 J]

= Qo)'+@o")* [ —1+4-3
Let——— =@
= 160* +160° 2
= 16(0* +@*) ‘
_l_‘\/_-j': 2
2
= 16[@) . 0+ & . &)
=16+ @) =0 = 1
= 16(-1) 0+ ot =-1
= -16=R.H.S

4.4 Four Fourth Roots of Unity
Let x be the fourth root of unity

4 1
x =41=q
x=1 ;
X*-1=0

CP-DEE+1) =0

P-1=0=32=1 =>x=2%1
and ¥+1=0 :rx_z=--1=>x=:ti.
Hence four fourth roots of unity are:

L 444

+1,-1,+1i,—1i.
4.4.1 Properties of four Fourth Roots of Unity
We have found that the four fourth roots of unity are:
+1, -1, +i,—i
i) Sum of all the four fourth roots of unity is zero
+1H ) +it (D=0
ii)  The real fourth roots of unity.are additive inverses of each other -
| - +1 and -1 are the real fourth roots of unity '
: _ and+1 + (-1)=0=(-1)+1 ;
iii)  Both the complex / imaginary fourth roots of unity are conjugate of each other



: ~_numbers. It can be considered as a Polynomial function of x. The highesf'poWer of x

Chapter 4: Quadratic Equations

i and —i are complex / imaginary fourth roots of unity, which are obviously
conjugates of each other. i

iv) Product of all the fourth roots of unity is —1
I (1) xix (<i)=-1

T A R T

' - Exercisedd
1. Find the three cube roots of: 8, -8, 27, =27, 64.
2. Evaluate: :

) (l+o-0*) i) &®+0®+1 i) (1+0-)1-0+d)

9 7 .
iv) [—l+2 = +[_1_2 _3] v) _(-l+\f—73)§+(—1—\ﬁ)5
3. Show that:
) X-y=@-y)x-wy)x- ay)
i) C+y+2-3xyz=(x+y+2)(x+ @y + &) (x+ &y + ax)
iii) (1 + o)1+ @)+ o*)(1 + &) ..., 2n factors = 1
Hint: 1+ 0'=1+& . o=1+0=-, l+f=1+0’.&’=1+F=-0

4, If wis a root of X* + x + 1 = 0, show that its other root is @’ and prove that
@ =1.
5. Prove that complex cube roots of —1 are : +2\[§ ! and : “:2\5 : ; and hence
9 9
1 it —f=
prove that[ +2\,_3] - [1 ;/_3) =-2.
6. If wis a cube root of unity, form an equation ' whose roots are 2 and 2a7-
7 Find four fourth roots of 16, 81, 625.
8. Solve the following equations:
) 2*-32=0 i)  3y°-243y = 0
i) X+x*+x+1=0 iv) S5x°-S5x=0

4.5 Polynomial Function

A polynomial in x is an expression of the form
, a,x"+a, x"" +..+a,x+a,, a, #0 )
“where # is a non-negative integer and the coefficients a,,a,_y, ...,a; and ag are real

in polynomial in x are called the degree of the polynomial. So the expression (i), is a
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polynomial of degree n. The polynomialsx*—2x+3, %:.3 +2x*—5x+4 are of
degree 2 and 3 respectively.

Consider a polynomial; 3x ' —10x" +13x - 6.

It we divide it by a lincar lactor v 2 as shown below, we get a quotient
x*—4x+5 and a remainder 4. '

3x* —4x+S5 < quotient
RiVisor D=2 ) 3x*—10x2 +13x—6 <« dividend
3x® —6x°
-+
—4x% +13x
—4x* +8x
+ -
5x -6
5x —-10
— +

4 < remainder
Hence we can write: 3.x3 —10x* +13x—6=(x— )(3::2 —4x+5)+4

4 6 Theorems

Remainder Theorem: If a polynomial f(x) of degree n 21, n is non-negative

integer is divided by x—a till no x-term exists in the remainder, then fla) is the
remainder.

Proof: Suppose we divide a polynomial fix) by x—a. Then there exists a unique
quotient g(x) and a unique remainder R such that {x) = (x-a) g(x) + R @)

Substituting x = a in equation (i), we get

f(@)=(a-a)g(@)+R |
= fa) =R

Hence remainder = f{a)

x=il"

Example 1. Fmd the remmnder when the polynom:.al .lv:3 + 4Jt:2 2x+5 is lelded by
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Solution. Let fix) = x* +4x* -2x+5 andx—a=x-1 =a=1

Remainder = f(1) (By remainder theorem)
= 1) +4()*=-2(1) +5
=1+4-2+5
=8

Example 2: Find the numerical value of k if the polynomial x” + kx* —7x+6 has a
remainder of —4, when divided by x + 2.

Solution: Let fix) = x’ + kx> —7x+6 and x—a=x+2, we have, a=-2

Remainder = f(-2) : (By remainder theorem)
- (2P +k(-2) -7 +6
=-8+4k+14+6
Gien thatrem: 11?1{'1312-4
4k +12 - 4
= 4k =-16
— k=4

Factor Theorem: The polynomial x — a is a factor of the polynomial f{x) if and
only if fla)=0 i.e., (x—a) is a factor of f{x) if and only if x = a is a root of the
polynomial equation f{x) = 0.

Proof: Suppose g(x) is the quotient and R is the remainder when a polynomial f{x) is
divided by x —a, then by Remainder Theorem

fx)=(x—a)g(x)+R
Since f{a) = 0 = R=0
f)=(x-a)g(x)

(x —a) is a factor of f(x).

Conversely, if (x—a) is a fac.:tor of f{x), then
R =fla) =0

which proves the theorem.
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Example 3: Show that (x —2) is a factor of x* —13x? + 36.
Solution: Let fix) = x* —=13x*+36 and x—a=x-2=a=2

Now f(2) = (2)* —13(2)* +36
=16—-52+36
=(0=remainder

= (x—2)is a factor of x* —13x% + 36

4.7 Synthetic Division

There is a nice shortcut method for long division of a polynomial f{x) by a
polynomial of the form x —a. This process of division is called Synthetic Division.

To divide the polynomial px® + qx2 +cx+d by x—a

(| D C +— {irst line

| [ O] l:] «—— Second line
ik

(] ) = ]
=

Coefficients of Remainder
quotient

<—— third line

Out Line of the Method:

i) Write down the coefficients of the dividend fix) from left to .right in
decreasing order of powers of x. Insert O for any missing terms.

ii) To the left of the first line, write a of the divisor (x — a).
iii)  Use the following patterns to write the second and third lines:

Vertical pattern @) - Add terms

Diagonal pattern (/' )= Multiply i)y a. _
Example 4: Use synthetic division to find the quotient and the remainder when the
polynomial x* —10x? —2x+4 is divided by x +3.

Solution: Let f(x)=x* -10x* =2x+4

=x*+0x> -10 -2
s S

Dmdcndx -10x* -2x+4
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3 ll 0 -10 2 4  +— firstline

-3 \ -3 <+«—— Second line
/“ i/" l &/’ :
<«—— third line
L Remainder
. Quotient = x>=3x2 —x+1

Remainder =1
Example 5: If (x — 2) and (x +2 ) are factors of x*—13x?+36. Using synthetic
division, find the other two factors.
Solution: Let f(x)=x*—13x*+36 ' -
=x*+0x’ -13x* —0x+36
‘Herex—-a=x-2 =x=2andx—a=x+2=x—(-2) =>x=-2
By synthetic Division:

25 |1IENS0R SRR (S 6
2 4 -18 -36
211 2 -9 -18(0 |
-2 0 18 — Remainder 5,'
1 0 -9 |0“'/ 3
. Quotient=x*+0x-9 \ ‘;
=x*-9 '
=(x+3)(x-3)

) !
.. Other two factors are (x + 3) and(x — 'ﬂ : r
:

Example 6: If x + 1 and x — 2 are factors of v + ;n * + gx+2.By use of synthetic
division find the values of p and q.

Solution: Herex—a=x+1=a=-1landx—-a=x-2 =a=2
Let f(x) = x° + px* +qx+2

By Synthetic Division: o T fzimanyion

Rl T 2 e )
: - -1 —ptl-g+p-l
2 |1 p-lg-ptli-gipey

SIS D) ) Remalnder
1 p+l lp+q+3c-/
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)

Since x + 1 and x — 2 are the factors of f{x)

p-q+1=0 | @)

and p+¢g+3 =0 (ii)
Adding (i) & (i) we get2p +4=0 =p=-2
from(@{i)-2-g+1=0 =q= -]

Example 7: By the use of synthetic division, solve the equation x* —5x* + 4=0 if
—1 and 2 are its roots.

CIRIBIRE0S =580 /4
1 =4
21 -1 -4 4 lo
)= = Remainder
ei=2 | i
Solution: fix) = x*=0x-5x*+0x+4
Depressed Equation:
x24x-2 =0
= (x+2)(x-1)=0 =x=—2o0r x=1

Hence Solution set = {-2,-1,1,2}.
£ Exerclse 4 5

Use the remainder theorem to find the rcmamder when'the first polynomlal is divided
by the second polynomial:

1. 12+3x+7,x+l _ 2. xa—x2+5x+4 ,-'x¥2

A A x5 x Tl - 4. = Ox 2 raxya s tyty

Use the factor theorem to determine if the first polynomial is a factor of the
second polynomial.

5. x-1,x+4x-5 6. x—z,' Y ix—Tx+1
7. 0+2,20°+ 0’ -40+7 8. 'xQd,J!'—a" where n is a positive integer
9, x+a,x"+a",whcrenisanoddinteg_er.

L —— g —— e ———



10.

11.

Use Synthetic division to show that x is the
result to factorize the polynomial completely.

12.
14.
1S.

16.

4.8

Sum of theroots =S = ==

] 3 t 3
._ _Constant ===
Product of the roots= P= < = —COL fx

When x* + 2x + k¢’ + 3 is divided by x - 2, the remainder is 1. Find the
value of k. : '

When the polynomial x* + 2% + kx + 4 is divided by x — 2, the remainder is
14. Find the value of . :

solution of the polynomial and use the

X =Tx+6=0% 'x=2 135  X-28x—48=0 ‘x=-4
2+ T - 4% - 275 - 18, x=2, x=-3

Use synthetic division to find the values of pand-qif x + 1 and x — 2 are the
factors of the polynomial x> + px* + gx + 6.

Find the values of @ and b if -2 and 2 are the roots of the polynomial
X’ —4x* + ax + b.

Relations Between the Roots and the Coefficients of
a Quadratic Equation

Let ¢, 3 be the roots of ax* + bx + ¢ =0, a #0 such that

_ =b+[’—4ac i B=-b-3[b3—-4ac

2a 2a

_—b+\[b’—4ac —b-[b*—4ac

soo+ = %0 + 2a

—b++\b*—4ac—b-b’-4ac _ 2b _ _%
: 2a
i 7_ _ b-lb*—4ac
s~ O 2[ b+[b 4ac]( ]

22 2a

(= b = (o —dac)

b’— b’ +4ac 4ac _C
— 402 — 4 ai a
b _ Coefficientofx
=~ Coefficient of
term

o

a ~ Coefficient €

Chapter 4: Quadratic Equations _
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The above results are helpful in expressing symmetric functions of the roots in
terms of the coefficients of the quadratic equations.

Example 1: If o, B are the roots of ax* + bx + ¢ =0, a # 0,find the values of
o o e i,
i) oc+p ii) B e iii) (ax-p)
Solution: Since @, B are the roots of a’ +bx+c=0
b (4
a+f=-, and off =

i) o+ B> =(+pP’-208

. b)? g b 2c b*-2ca
=g ) e e

L oGy P2 _& +ﬂ3 (a+ )’ -3aB(a+ P
A BT a apf op
( bT ( ] — b’ + 3abc
a3
<
a a
_ =b’+3abc
= a‘c
iii) ((';'.'—ﬁ)2 =(a+ﬁ)’—4aﬁ

b\? @ b’ g b* —4ac
IERCEREE

Example 2: Find the condition that one root of ax* + bx+c=0, a#0
is square of the other.

Solution: As one root of ax* + bx + ¢ = 0'is square of the other,

let the roots be 0. and o7
Sumofroots =@+ =-2 | @)
Product of roots = a. o7 = 'E' = 0?=£' ; (ii)
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Cubing both sides of (i), we get
b!
o+ al+3aai(o+ ad) =-3

3

= o+ () +3a+ a2)=—%
3
S < +(§]1+ 35[_2) -5 (From (i), (i)

3
= a2c+acz—3abc=—b

4.9 Formation of an Equation Whose Roots are Given
(x — a@)(x — B) = 0 has the roots aand f3
= X —(a+ B)x+ af=0 has the roots &z and .
For S = Sum of the roots and P = Product of the roots.
Thus X —Sx+P=0

Example 3: If ¢, B are the roots of ax* + bx + ¢ - 0 form the equation whose roots
are double the roots of this equation.
Solution: *.* o and f are the roots of ax* + bx + ¢ =0

b

a+f =-, and aﬁ=§'

The new roots are 2 and 2.
Sum of new roots =2a+ 28

=2(a+ ) =—2—:'

&

Product of new roots = 2. 28 =48 =

Required equation is given by
y* — (Sum of roots) y + Product of roots =0

2b 4 -3
= y2+7y+‘f' =O‘ = ay2+2by+4c=_0

A e L O T
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1.

8.

9“

. Exercise4.6

If @, B are the roots of 3x* — 2x + 4 = 0, find the values of

: 1 1 = o

i)- ot p? i1) E+§ iii) a'+f*
l 7 2

iv) a3+ﬁ3 V) ?11_34.[3_3' vi) o2-pB2

If o, B are the roots of x* — px — p — ¢ = 0, prove that
l+a)(l+p=1-c
Find the condition that one root of x* + px + ¢ =0 is
1)  double the other ii)  square of the other
ili) additive inverse of the other iv) multiplicative inverse of the other.

If the roots of the equation. x* — px + ¢ = 0 differ by unity, prove that
pr=4g+ 1.

. RIS eI = b . ;
Find the condition that x—a T x_p = may have roots equal in magnitude

but opposite in signs.
If the roots of px* + gx + g = 0 are @ and f3 then prove that

If o, B are the roots of the equation ax® + bx + ¢ = 0, form the equations whose

. roots are
Y )
iv) o, B 7 e o+ Bty

1 1
vii) (@-pB)%, (a+ B)*  viid) —-?,—E
Ifa,ﬂa;cmcmotsofs_xz—x—J:O,formtheequaﬁonwhoserootsare%:_and%.

If @ and 3 are the roots of x* — 3x + 5 = 0, form the equation whose roots are

l-o dl—ﬁ
LT 1+p° .




4.10 Nature of the roots of a quadratic equation

We know that the roots of the quadratic equation ax* + bx + ¢ = 0 are given by

—bi\}b2-4qc

2a

the quadratic formula as: x =

We see that there are two possible values for x, as discriminated by the part of
the formula ++/b* — 4ac .

The nature of the roots of an equation depends on the value of the expression
b* — 4ac, which is called its Discriminant.

Case 1: If b*> - 4ac = 0 then the roots will be — 12 and — .
2a 2a

So, the roots are real and repeated equal.
Case 2: If b* — 4ac < 0 then \[b* — 4ac will be imaginary

So, the roots are complex / imaginary and distinct / unequal
Case 3: If b* — 4ac > 0 then /b’ — 4ac will be real.

So, the roots are real and distinct / unequal.

However, if b* — 4ac is a perfect square then \/b*> — 4ac will be rational, and
so the roots are rational, otherwise irrational.

Example 1: Discuss the nature of the roots of the following equations:

i) X+2x+3=0 i) 22+5x—1 =0
iii) 27%-7x+3=0 iv) 9% - 12x+4=0
Solution: : '

i) Comparing X* + 2x + 3 = 0 with ax® +bx + ¢ = 0, we have
a=1,b=2,c=3" _
" Discriminant ( Disc) = b*—4ac

2y -41)3) =4-12=-8

Il

Il

= Disc<0
The roots are complex / imaginary and distinct / unequal.
ii) Comparing 2x2+5x— 1=0withax*+bx+c=0,wehavea=2, b= 5 c=-1
Disc’' = b’ - ;
= (5 -4(2)(-1)
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5.

. Exercise 4.6
If @, B are the roots of 3x* — 2x + 4 = 0, find the values of
L o R
1)- o +ﬁ2 i1) ﬁ+0: i) o'+ f
iv) o’+p’ v) $+% vi) o?-pB2

If ¢, B are the roots of x* — px — p — ¢ = 0, prove that
l+a)(1+pP=1-c
Find the condition that one root of x* + px + ¢ =0 is
i)  double the other ii)  square of the other
iii) additive inverse of the other iv) multiplicative inverse of the other.

If the roots of the equation. x* — px + ¢ = 0 differ by unity, prove that
pP=4g+ 1.

a
x—-a Tx-b"

Find the condition that

but opposite in signs.
If the roots of px° + gx + ¢ = 0 are azand f3 then prove that

If o, B are the roots of the equation ax* + bx + ¢ = 0, form the equations whose

5 may have roots equal in magnitude

. Toots are
: 2 5 1 1 ]
WG i i) 5B iii) 77 .57
. 3 3 JL b 1
iv) o, B V) @B vi) o+ ,,B+B

Vi) (=B @+ B i) 53 3

If o, B are the roots of 5x* —x—2 = 0, form the equation whose roots arc% .and%.

If oz and B are the roots of ¥’ — 3x + 5 = 0, form the equation whose roots are

1-o dl-—ﬁ
o noe I B
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4.10 Nature of the roots of a quadratic equation

We know that the roots of the quadratic equation ax’ + bx + ¢ = 0 are given by

—bi\]b3—4qc

2a

the quadratic formula as: x=

TTIATETY |

We see that there are two possible values for x, as discriminated by the part of
the formula £4/b*—4ac .

The nature of the roots of an equation depends on the value of the expression
b* - 4ac, which is called its Discriminant.

b
2a

So, the roots are real and repeated equal. ' ¢ |
Case 2: If b* - 4ac < 0 then\[b> — 4ac will be imaginary

So, the roots are complex / imaginary and distinct / unequal
Case 3: If b* — 4ac > 0 then \[b? — 4ac will be real.

So, the roots are real and distinct / unequal.

However, if b* - 4ac is a perfect square then \/b* —4ac will be rational, and
so the roots are rational, otherwise irrational.

Case 1: If b* — 4ac = 0 then the roots will be "2% and —

v na s o o e

Example 1: Discuss the nature of the roots of the following equations:

) X+2x+3=0 i) 2¢+5x-1 =0 '
iii) 2@-7x+3=0 iv) 9% - 12x+4=0 |
Solution: : ' i |

i) Comparing > + 2x + 3 = 0 with ax® +bx + ¢ = 0, we have
a=1,b=2,c=3"

Discriminant ( Disc)

b* —4ac |
2> -41)3) =4-12=-8

o o PN s

= Disc <0

The roots are complex / imaginary and distinct / unequal.
il) Comparing 2x* + 5x— 1 =0 with ax* + bx+ c=0,we havea=2, b = 5 c=-1
Disc’ = b’ -4ac

= (57 -4@)-1)
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=25+8=33

= Disc > 0, but not a perfect square.

The roots are irrational and unequal.

iii) Comparing 2x° — 7x + 3 = 0 with ax’ + bx + ¢ = 0, we have

a=2,b=-7,¢c=3
Disc =b* —4ac

=(-7)*-4(2)(3)

=49-24 =25=5%
= Disc > 0, and a perfect square.

" The roots are real and uneq_ual.
iv) Comparing 9x* —12x + 4 = 0 with ax” + bx + ¢ = 0, we have,

a=9,b=-12,c=4

Disc =b*—4ac
=(-12)*-4(9)(4)
=144 —-144=0

= Disc=0
The roots are real and equal. -
Example 2: For what values of m will the following equation have equal root?
m+ D22 +2m+3)x+2m+3 =0,m # -1
Solution: Comparing the given equation with ax® +bx+c =0
a=m+1, b=2m+3), c=2m+3
Disc =b*—4ac
=[2(m +3)*—4(m + 1)2m + 3)
=4(m* + 6m +9) — 4(2m* + 5m + 3)

=—4m* + 4m + 24
The roots of the given equation will be equal, if Disc. =0 i.e.,
if —4m* +4m + 24 =0

= m-m-6=0

= Mm-3)m+2)=0=m =30orm=-2
- Herice if m =3 or m = -2, the roots of the given equation will be equal.
Example 3:Show that the roots of the following equation are real
(x—a)(x=b) + (x—b)(x-c) +(x—c)(x—a)=0
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Also show that the roots will be equal only if a=b = c.
Solution: (x-a)(x-b)+(x-b)(x-c)+(x-c)(x—a) = 0
= xX—ax—bx+ab+xX*—bx—cx+bc+xX*—cx—ax+ac = 0
= 3¢-2a+b+c)x+ab+bc+ca =0
Disc =b*-4ac

=[2(a + b + ¢)* - 4(3)(ab + bc + ca)
=4(a* + b* + ¢* + 2ab + 2bc + 2ca — 3ab — 3bc — 3ca)
=4(a’* + b* + > —ab — bc — ca)
=2(2a* + 2b* + 2¢* - 2ab — 2bc — 2ca)
=2[a’* + b* - 2ab + b* + ¢* = 2bc + ¢* + @*— 2ca)
=2[(a-b)*+ (b-c)*+ (c-a)’]

= 2(Sum of three squares)

g

Thus the discriminant cannot be negative.
Hence the roots are real.
The roots will be equal, if the discriminant = 0

Thu.lsposmbleonlylfa b=0,b-c=0,c-a=0ie,ifa=b=c.

Exerclse oy it

DISCUSS the nature of the roots of the following equatJons
i) 4°+6x+1= 0 i) ¥-5x+6=0
iii) 2¢-5x+1= 0 iv) 25¢*-30x+9=0
22 Show that the roots of the following equations will be real:

i) .12—2[m+;‘:;)x+3=0; me 0O

i) (b-o)X+(c—-ax+(@-b)=0;a,b,ce O
Ak Show that the roots of the following equations will be rational:

) @+qX-pr—q=0; i) pr-(-gx-q=0;
4. For what values of m will the roots of the following equations be equal?

i) (m+1DXP+2m+3)x+m+8 =0

ii) X-21+3mx+7@3+2m) =0

i)  (1+m)x*—=2(1+3m)x+(1+8m) =0 :
5. Show that the roots of x* + (mx + ¢)’ = a® will be equal, if ¢* =a*(1 + m?)

P
=
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6.  Show that the roots of (mwx + ¢)’ = 4ax will be equal, if ¢ = ;% tm#0

7.  Provethat’s +&b”)—
8. Show that the roots of the equation (a* — be)x® + 2(b* — ca)x + ¢ —ab = 0 will
be equal, if either @ + b’ + ¢ = 3abc or b = 0.

4.11 System of Two Equations Involving Two Variables

We have, so far, been solving quadratic equations in one variable. Now we
shall be solving the equations in two variables, when atleast one of them is quadratic.
To determine the value of two variables, we need a pair of equations. Such a pair of
equations is called a system of simultaneous equations.

=1 will have equal roots, if c>=a’m* + b*; a # 0, b # 0

No general rule for the solution of such equations can be laid down except that
some how or the other, one of the variables is eliminated and the resulting equation in
one variable is solved.

Case I: One Linear Equations and one Quadratic Equation

If one of the equations is linear, we can find the value of one variable in terms
of the other variable from linear equation. Substituting this value of one variable in
the quadratic equation, we can solve it. The procedure is illustrated through the
following examples:

Example 1: Solve the system of equations:
x+y =7and P-xy+y =13
Solution: Xx+y=7 =x=T-y @)
Substituting the value of x in the equation x* — xy + y* = 13, we have
A-»>=yT-y+y =13
49 — 14y+ y2 —Ty+ y2 +_y2 =13
3y*—21ly+36=0
Y =Ty+12=0
@=3)(y—4)=0
y=3 ory=4 :
Putting y =3, in (i), weget x=7-3=4
Putting y=4,in (i), weget x=7-4=3
Hence solution set = {(4,3), 3,4)}.

e
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Note: Two quadrauc equations in which xy term is mlssmg and thg coefﬁclents of :
x* and y* are equal, give a linear equation by subtraction: | - ‘“ Tl 9

Example 2: Solve the following equations:
X+y+4x =1 and X+ (@ -1)* =
Solution: The given system of equations is

P+y+dx=1 ' . @)
L+ —2y+1=10 (i1)
Subtraction gives,
4x+2y+8=0
=>2+y+4 =0 _
L y=—0rod - (i)

Putting the value of y in equation (i),
P (2x—4P +4x=1= X +4° + 16x+ 16+ 4x=1
= 5xX*+20x+15=0 = Z+4x+3=0
= @+3)(x+1)=0 = x=—3orx=-1
Putting x =—3 in (iii), we get; y=-2(-3)—4=6-4=2
Putting x=—1 in (iii), we get; y =—2(-1) -4 = 2-4=-2
Hence solution set = {( -3,2), (=1,=2)}. :

Exercise 48

Ll SRl e N

Solve the following systems of equations: ' a lopeaitis
1. 2x-y=4; 2P-4dy-y=6 2. =x+y=Si. X £ =17y

' 2u63
3. 3x+2y=T7;, 3% =25+2y 4, x+y=3; P =2, x#0,y#0
| - LS 3_ 4

5
T (r=3) 2 =5t 2x=y+6

g, (x+3)2+(y—1)2=5; B +y2 +2x=9

9. # +@+1)>=18; x+2)%+y =21
10. X +y2 +6x=1; x +y2--+‘2(x.+,y)=3
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Case II: Both the Equations are Quadratic in two Variables
The equations in this case are classified as:
1)  Both the equations contain only x* and y2 terms.
ii) . One of the equations is homogeneous in x and y.
iii) Both the equations are non-homogeneous.

The methods of solving these types of equations are explained through the
following examples:

% +y2 =25

Example 1: Solve the equations:{
2¢ +3y =6
Solution: Let x* =u and y* =v
By this substitution the given equations become

u+v=25 (1)

2u + 3v =66 (ii)
Multiplying both sides of the equation (i) by 2, we have

2u +2v =350 ' (iii)
Subtraction of (iii) from (ii) gives,

v=16

Putting the value of v in (i), we have
u+16 =25 = u=9 -

¥=9 =x=+3 and y’=16 = y=+4
Hence solution set = {(+3,+4)}.
Example 2: Solve the equations: & —3xy+2y°=0; 2 — 3£ + y2 =24
Solution: The given equations are:

X -3xy+2y° =0 , @)
2 -3x+y’ = 24 _ (ii)
Equation  x*-3xy+2y* =0is homogeneous in x and y
= (x-y) (x—2y)=0. (Factorizing)
I=>x-—)"=0 : or x—2y=0 j
=x=y (D= =2y @iv)

Putting the value of x in (ii), we get | Putting the value of x in (ii), we get
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2y* —3y+y’ =24 2(2y)> - 3(2y) + y* =24
=y —y-8=0 = 8y’ — 6y +y* =24
141432 =32 -2y—-8=0
=Yy = 2
1+4/33 4
T =0=na:2
4
when y =l+2 = ’ when Y = _E’
) 4 8
from (iii)x =L%@ from (iv) x = 2(—-5)= -3
1-+/33 Wwhen y=2,
When sy s e from (v) x = 2(2)=4
i |
rom (ii)x = 2

Hence following is the solution set.

o ) B

2
Example 3: Solve th : _{f_y =
xample 3: Solve the equations: 452 s
2 2 .
; : Xy =35 @)
Solution Given that { 42 A etis : (ii)

We can get a homogeneous equation in x and y, if we get rid of the constants.
For the purpose, we multiply both sides of equation (i) by 18 and both sides of
equation (ii) by 5 and get :

{18::2-— 18y*

20x* — 15xy
Subtraction gives,
2x* — 15xy + 18y’ =0
= ((x—-6y)(2x-3y)=0
= x-6y=0 or 2x—-3y=0

I

90

90

Combining each of these equations with any one of the given equations-we

can solve them by the method used in the example 1.
: or
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x—6y=0 2x—3y=0
= x =6y = 2x=3y Sx =%
5 .1‘2—'_)’2=5 from (1) ,1:2 y2=5
6y)>—y*= 3 ¥
=  35°= [5}’) =
2 1 ' 24y =
- el = 9;2 4y* =20
= Sys=120
; + 1 A\ Y=4
SRR =+ == =
1‘\[5 — 3 y=i2
- When y = 2,
When y \!,—? : y :
6( 1 ] 6 X = 5’(2) =13
x=6|"T ="
\ﬁ \ﬁ When y = -2,
Wh =" =
en y_—_\ﬁx- ‘\Ff _\Ff x=5(0-2)=-3
; SOIPNIRNE (= 61
Hence Solution set _{‘\ﬁ 7),[ Nk \/—J( 3;=2),.3 2)}
| v .,f_":' Exermse 4. 9
Solve the followmg systems of Equatmns
1. 2.).'2 = 6+3y2 > 3x2-5y2 = 7
QUPMSRE A= 2 ' . X+2y =19
3. 2 -8 = 5y 13 = 2y
4. X —5xy +6y> = 0 I e U
5.  128-25xy+127 =0 ; 472 +7) = 148
5 ’ |
6. ;;12x2—11xy+2y2=0';it 2 +7xy = 60
7. X-y =16 ; xy=15
8. f-i-xy =9 s ,'C'z---yz =2 .
oIl T L0 . 243-x
10. 2+ =5 =2

from (1)
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4.12 Problems on Quadratic Equations

We shall now proceed to solve the problems which, when . expressed
symbolically, lead to quadratic equations in one or two variables.

In order to solve such problems, we must:
1)  Suppose the unknown quantities to be x or y etc.

2)  Translate the problem into symbols and form the equations satisfying the
given conditions. ' '

T TITARIINI Y

Translation into symbolic expression is the main feature of solving problems
leading to equations. So, it is always helpful to proceed from concrete to abstract e.g. .
we may say that: E

i) Sisgreaterthan3by 2 (=5-3) ii) xis greaterthan 3 by x—3 -

iii) 5is greater thanyby 5—y 1v) x is greater than y by x — y.

The method of solving the problems will be illustrated through the following
examples: t

Example 1: Divide 12 into two parts such that the sum of their squares is greater than
twice their product by 4. :

Solution: Suppose one part =t
The other part =12—x
Sum of the squares of the parts =x* + (12 — x)’
Twice the product of the parts = 2(x)(12 - X)
By the condi_tit)h of the question,
2+ (12-x2-2x(12-x)=4
= X +144-24x+ ¥ -24x+ 2 =4

= 47 -48x+ 140 =0 = | 2o Dvhssi=0

Ifon_epartiss,tl'xenﬂleotherpart=12_—5__=7, g

= E-5x-7 =0 = x=50i_‘x=7 ' |
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and if one part is 7, then the other part = 12 — 7 =5
Here both values of x are admissible.
Hence required parts are 5 and 7.

Example 2: A man distributed Rs.1000 equally among destitutes of his street. Had
there been 5 more destitutes each one would have received Rs. 10 less. Find the
number of destitutes.

Solution: Suppose number of destitutes = x

Total sum = 1000 Rs.
Each desitute gets = @ Rs.

For 5 more destitutes, the number of destitutes would hz_{ve beenx + 5

Each destitute would have got = i(_)?g Rs.

This sum would have been Rs. 10 less than the share of each destitute in the
Pprevious case.

1000x = 1000(x + 5) — 10(x + 5)(x)
X+ 5x—500=0

(x+25)(x-20)=0

I e

x=-25 or x=20
The number of destitutes cannot be negative. So, —25 is not admissible.
Hence the number of destitutes is 20.

' Emlnle 3: The length of a room is 3 meters greater than its breadth. If the area of
the room is 180 square meters, find length and the breadth of the room.
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Solution: Let the breadth of room = x meters
and the length of room = x + 3 meters
. Area of the room = x (x + 3) square meters
By the condition of the question
x(x+3)=180 @)
= x> +3x-180=0 (i)
= (x +15)(x-12)=0
x=-15o0rx=12
As breadth cannot be negative so x = —15 is not admissible
o S when x =12, we get length x+3=12+3=15 S BN
. breadth of the room = 12 and length of the room = 15

Example 4: A number consists of two digits whose product is 8. If the digits are

interchanged, the resulting number will exceed the original one by 18. Find the
number.

Solution : Suppose tens digit = x
and units digit =y
The number = 10x + y
By interchanging the digits, the new number = 10y + x _
Product of the digits = xy
By the condition of question; ]
xy= 8 “ | @
and 10y+x:=10x+.y+18 (i1)
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Solving (i) and (i1),we get

X==4 orx=2,

when x=-4,y=-2 and when x=2, y=4

80.

9.

Rejecting negative values of the digits,
Tens digit =2
and Units digit =4

Hence the required number-=24

Exerc1se 4 10

The product of one less than a certain positive number and two less than three
times the number is 14. Find the number.

The sum of a positive number and its square is 380. Find the number.

Divide 40 into two parts such that the sum of their squares is greater than 2
times their product by 100.

The sum of a positive number and its reciprocal is 25—6 . Find the number.

A number exceeds its square root by 56. Find the number.

- Find two consecutive numbers, whose product is 132.

(Hint: Suppose the numbers are x and x + 1).

The difference between the cubes of two consecutive even numbers is 296.
Find them. '

(Hint: Let two consecutive even numbers be x and x + 2)

A farmer bought some sheep for Rs. 9000. If he had paid Rs. 100 less for
each; he would have got 3 sheep more for the same money. How many sheep
did he buy, when the rate in each case is uniform?

A man sold his stock of eggs for Rs. 240. If he had 2 dozen more, he would
~ have got the same money by selling the whole for Rs. 0.50 per dozen cheaper.
. How many dozen eggs dzd he sell?
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

A cyclist travelled 48 km at a uniform speed. Had he travelled 2 km/hour
slower, he would have taken 2 hours more to perform the journey, How long
did he take to cover 48 km? _
The area of a rectangular field is 297 square meters. Had it been 3 meters
longer and one meter shorter, the area would have been 3 square meters more.
Find its length and breadth.
The length of a rectangular piece of paper cxceeds its breadth by 5 cm. If a
strip 0.5 cm wide be cut all around the piece of paper, the area of the
remaining part would be 500 square cms. Find its original dimensions.
A number consists of two digits whose product is 18. If the digits are
interchanged, the new number becomes 27 less than the original number. Find
the number.
A number consists of two digits whose product is 14. If the digits are
interchanged, the resulting number will exceed the original number by 45.
Find the number. '
The area of a right triangle is 210 square meters. If its hypoteneure is 37
meters long. Find the length of the base and the altitude.
The area of a rectangle is 1680 square meters. If its diagonal is 58 meters
long, find the length and the breadth of the rectangle.
To do a piece of work, A takes 10 days more than B. Together they finish the
work in 12 days. How long would B take to finish it alone?
Hint: If some one takes x days to finish a work. The one day’s work will
be—l— g

X -
To complete a job, A and B take 4 days working together. A alone takes twice
as long as B alone to finish the same job. How long would each one alone take
to do the job? ;

An open box'is to be made from a square piece of tin by cutting a piece 2 dm
square from each corner and then folding ‘the sides of the remaining piece. If
the capacity of the box is to be 128 c.dm, find the length of the side of the
piece.

A man invests Rs. 100,000 in two companies. His total profit is Rs. 3080. If

he receives Rs. 1980 from one company and at the rate 1% more from the

other, find the amount of each investment.
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5.1 Introduction

s . :
We have learnt in the previous classes how to add two or more rational
fractions into a single rational fraction. For example,

1 2 3x

x—1"x+2 T (x-D+2)

i)

Do g i P
x+1 . (x+1)? x-2 @+1)x-2)

and i)

In this chapter we shall learn how to reverse the order in (i) and (ii) that is to
express a single rational function as a sum of two or more single rational functions
which are called Partial Fractions.

Expressing a rational function as a sum of partial fractions is called Partial
Fraction Resolution. It is an extremely valuable tool in the study of calculus.

2 An open sentence formed by using the sign of equality ‘=’ is called an

- equation. The equations can be divided into the following two kinds:

Conditional equation: It is an equation in which two algebraic expressions are equal
for particular value/s of the variable e.g.,

3
; 2
~b) #*+x—6=0isaconditional equation and it is true forx=2,~ 3 only.

a) 2x=3is a conditional equation and it is true only if x =

Identlty It is an equation which holds good for all values of the variable e.g.,

a) (a+b)x=ax+ bxis an identity and its two sides are equal for all values
of x.

b) (x+3)(x+4)=x + 7x + 12 is also an identity which is true for all values
of x.

-, For convenience, the symbol =" shall be used both for equation and identity.
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5.2 Rational Fraction

We know that — where p, g € Z and q # 0 is called a rational number.
q
P(x)

Similarly, the quotient of two polynomials 0(x) where Q(x) # 0, with no common
factors, is called a Rational Fraction. A rational fraction is of two types:

. 5.2.1 Proper Rational Fraction

Px)
- 0(x)
of the polynomial P(x) in the numerator is less than the degree of the polynomial O(x)

2x—=35 :
in the denominator. For example, x-?-l e and 2_1 & proper rational

A rational fraction is called a Proper Rational Fraction if the degree

fractions or proper fractions.

5.2.2 Improper Rational Fraction

A rational fraction —g(% is called an Improper Rational Fraction if the
degree of the polynomial P(x) in the numerator is equal to or greater than the degree -;
of the polynomial Q(x) in the denominator. >

xr G=2x+1) -3 r=x+x+1

) 5 and
2x—3’(x—1D(x+4)’3x+1 L+5

For example,

are improper rational fractions or improper fractions.

Any improper rational fraction can be reduced by division to a mixed form,
~ consisting of the sum of a polynomial and a proper rational fraction.

3x° : : 0,
For examplc, x_+21 is an improper rational fraction. By long division we

3x 13
obtain D) -3x+6+x 5

ISR
i.e., an improper rational fraction 3;:_ 21 has

t'Jeen reduced to the sum of a polynomial 3x + 6 =SS

and a proper rational fraction % 5

When a rational fraction is scparated into partlal fractions, the result is an
1dent1ty, i.e., it is true for all values of the variable. }
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The evaluation of the coefficients of the partial fractions is based on the
following theorem:

“If two polynomials are equal for all values of the variable, thei the
polynomials have same degree and the coefficients of like powers of the variable in
both the polynomials must be equal”.

For example,
If px3+qx2—ax+b=2x3—'3x2-4x+5, YV x
then p=2,g=—-3,a=4and b=35.

P(x)

(x)

into Partial

5.3 Resolution of a Rational Fraction

Fractions
' P(x)

Following are the main points of resolving a rational fraction ) into partial

fractions:

i)  The degree of P(x) must be less than that of Q(x). If not, divide and work
with the remainder theorem.

ii) Clear the given equation of fractions.

iii) Equate the coefficients of like terms (powers of x).

iv) Solve the resulting equations for the coefficients.

We now discuss the following cases of partial fractions resolution.

P
- CaselI: Resolution of a%?)' into partial fractionswhen Q(x) has only non-

repeated linear factors:
‘The polynomial O(x) may be written as:
0x)= (x—a) (x—ay)....(x—ay), where ay#ar#....#an
P(x Al Az An
QE;)): x—a  x—a " " " x-a,
~ Where, the coefficients A, A3, ..., An are numbers to be found.
The method is explained by the following examples:

Tx+ 25

leample 1: Resolve, m into Partial Fractions_.

Tx+ 25 A B
Solution:  Suppose oGy = 1 3t 144
Sy Multiplying both sides by (x + 3) (x + 4), we get
Tx+25 = A(x+4)+B(x+3)
= Tx+25 - Ax+4A+Bx+3B

is an identity.
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= Tx+25 = (A+B)x+4A+3B
This is an identity in x.

So, equating the coefficients of like powers of x we have
7= A+B and 25 = 4A+3B

Solving these equations, we get and ;

3
x+4" s

Hence the partial fractions are: -

x+3

wEmrt

Alternative Method:

S Tx+254 (7,1 LA B
UPPOSC (x 4+ 3)(x+4) T x+3 T x+4

= Tx+25 = Ax+4) + B(x+ 3)

As two sides of the identity are equal for all values of x,

letusputx=—3, and x=—4init. ‘
Putting x=—3, weget —21 +25 = A(-3+4)

= A=4 ' i
Putting x=—4,weget —28+25 = B(—4+3)

= B=3
H h ial fracti e ‘
ence the partial fractions are: “= = + 7 7. B
2 bl
—10x + 13
Example 2: Resolve s B into Partial Fractions.

(x—=1) 2 —5x+6)

Solution: The factor x* — 5x + 6 in the denominator can be factorized and its factors '

are x — 3 and x — 2. '
| X —10x+ 13 ¥ —10x+ 13

x-1)0*=5x+6)" (x—1)(x—2)(x—3)

Z-lox+1300 T4 SWpF Fle
SUPPOSE (1 x—-2)(x—3)  x—1"x—2" x-3

= x*—10x+13 = Ax—-2)(x—3)+Bx—-1)(x—-3) + Clx— 1)(x—2)
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which is an identity in x.

Putting x = 1 in the identity, we get
A2 -10(1)+13 = A(l-2)(1-3)+B(1 = DA =3)+C(1-1)(1~-2)
= 1-10+13 A(=1) (=2) + B(0) (= 2) + C(0) (-1)
AW=R AR VAT=T2
Putting x = 2 in the identity, we get
272-102)+13 = A0)(2-3)+B2-1)(2-3)+C2-1)(0)

Il

= 4-20+13 = B(1)(-1)
— =3= B R |[B=3

Putting'x = 3 in the identity, we get

@) -103)+13 = AG-2)(0)+BG-1)(0)+ C3-1)(3B-2)
= 9-30+13 = C(2) (1)
= —{l= 7HE s =—4

: : 3 4
Hence partial fractions are:

I M o T

Note: In the sqiuti‘on of examples 1 and 2. We observe that the value of
. the constants’ have been found by substituting those values of x in the

identities which can be got by putting each linear factor of the denominators
equal to zero. '

" In the Example 2 N P
a) the qenominator of Ais x— 1, and the value of A has been found by
puttingx—1=0 ie;x=1;

the (-ienominator of B is x - 2, and the value of B has been found by
puttingx—2=0 i.e.,, x=2; and

the denominator of C is x 3
= (B 3 a-[ld “le V 4
puttingx—3=0 ie. x=3. alue of C has been found by

: 20 T
Example 3: Resol X3 i
.5 olve #2x+ 3)E—1) into Partial Fractions.
Solution: :

o 204X —x—3 '
X2x+3)(x—1) IS an imprope‘r
- fraction so, transforms it into mixed from,"
Denominator =" x(2x + 3)(x - 1y
=y 23 4t —3x

b)

<)

-
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Dividing 2x° + x* — x — 3 by 2% + x> — 3x, we have
Quotient =1 and Remainder = 2x—3

2+ —x-3 7 2x-3
x2x+3)x=-1) = " Tx@x+3)x-1)
. 2x = S SATSND C
UPPOSC Sx + )= 1)) X L 20T R el

= -3 =A2x+3)(x-1)+Bx) (x—1)+ Cx) (2x+ 3)
which is an identity in x.
Putting x = 0 in the identity, we get A=1

Lh|oo

Putting2x+3=0 =x= —% in the identity, we get |B=—

: 1
Putting x—1 =0 = x =1 in the identity, we get | C= =%

8 1

Hence partial fractions are: 1+ L

x_5(2x+3)_5(3;—1)

1 21 ;
k- Sy 2 D=1
n 2x + 1 y 3 —4x-5
(x—1Dx+2)(x+3) * (x—2)(%+Tx+10)
59 - 6 =
(x—1D2x-1)3x—-1) ' (x=a)x-b)(x—0)
B 6 + 52 —1 . 2+ =5x+3
~ 2 —-x—1 t _ 2 + x> —3x
o (x— D —=3)x—5) RO 1oy
: (x—2)(x—4)(x—6) e * (1 —ax)(1 —bx)(1 —cx)
X as

. FiE+@+d)
[Hint: Put x* = y to make factors of the denominator linear]
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Case II: when Q(x) has repeated linear factors:

o % . ; P(x)
If the polynomial has a factor (x — a)", n 2 2 and n is a +ve integer, then 0(x)

may be written as the following identity:
P(\’) 0y A] Ag A,,
00~ (x—a)’ @-a) ' T (x-ay)"

where the coefficients A;, Ao, ...., A, are numbers to be found.

The method is explained by the following examples:

x—1
Example 1: Resolve, W into partial fractions.

Solution: Suppose x2+x—31 _— o 8 s+ ¢ .
(x+2) X+2 (x+2) " (x+2)

= P+x—1 = Ax+2*+Bx+2)+C @)

= C+x—1 = AP +4x+4)+Bx+2)+C (ii)

Putting x+ 2 =0 in (i), we get
(<2*+(=2)—-1 = A@©)+B0)+C

—. - 1=C

Equating the coefficients of x* and x in (ii), we get
and 1 = 4A+B :

= 1 = 4+B = [B =-3]

s ) l 3 1
Hence the partial fractions are: T2 Ga2) + G+2)7

=

- 1 : ! :
Example 2: Resolve, e+ 17 @—1) into Partial Fractions.

Solution: Here denominator = (x + 1)> &% — 1)
@+ 1P+ D)(x-1) = (x+ 1)’ (x-1)
: 1 1
T+ 1)PE-1) T @+ 1DPE-1

ST 1 _A+B+C+.D'
PPO G-DE+17° " x—1"x+17 (x+1)"" x+.1)

= 1=A@+1)’+B0o+1)’(x—1)+ C(x— 1)(x+ 1) + D(x—1) @)
= 1=A@+32+3x+ 1)+ B+ 2P —x— 1)+C*— 1)+ D(x- 1)




10.

Resolve the following into Partial Fractions:

= 1 =(A+B)X’+(3A+B+C)x*+(3A — B + D)x+(A

Putting x—1=0 = x=1 in (i), we get,

—1Bi= C=iD) ysite-i(id)

1=A22)° = |A= %
Putting x+ 1 =0 = x=-1 in (i), we get,
1
1=D(-1-1) = [D=-35
Equating the coefficients of x> ‘and ¥* in (11), we get -
. -1
0=A+B '=“B'=—A = B=—§
d 0=3A+B+C O—QLC Ci= 4
an =3A+B+C = 0=3-3+C = |C= -4
Hence the partial fractions are:
1. _1- S e
8 8 4 2 1 1 1 1ois

-1 x4+ 17+ )P c+ 1P T8(x=1) 8(x+1) 4(x+ 12 2(x+ 1)

Es

SRR

S

2x*=3x+4 5 5x? —2x+3 i 3 4565 e

(x-1) | (x+2)° TG+ 1)(x-1)

I BIPR g o PN Phibies i o

(x+2)>x—1) " (x—3)P%(x+1) o (x=2)(x—1)?
1 8 X . 'x—l '

x—172@x+1) ) e D), L x=2)(x+1)
4x 2x + 1 2t

02 -1) (x+ 1) L x+3)x—-Dx+2)> e

x-3)(x+2)

Chapter 5: Partial Fractions

R "
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Case III: when Q(x) contains non-repeated irreducible quadratic factor

Definition: A quadratic factor is irreducible if it cannot be written as the product of
two linear factors with real coefficients. For example, x* + x + 1
irreducible quadratic factors.

and x“ + 3 are

If the polynomial O(x) contains non-repeated irreducible quadratic factor then
P(x)

o) ™aY be written as the identity having partial fractions of the form:

Ax+ B
e i ;x e where A and B are the numbers to be found.
The method is explained by the following examples:

Example 1: Resolve -(xz%l_)(_il::i_) into Partial Fractions.

< 3x—11 Ax+B C

Solutmn:Sup;_mse EEDEE3) - o+l
= 3x—1l= (Ax+B)(x+3)+C(*+1) (i)
= 3x—11= (A+C)x*+(BA +B)x+ (3B +C) (ii)
Putting x+3 =0 = x=-—3 in (i), we get

=9 11

CO+1) =
Equating the coefficients of x* and x in (ii), we get
0=A+C = A=-C = [A=2]
and 3=3A+B= B=3-34 = B=3-6 = (B=-3]

fal Fraction ares ot —2
Hence the partial fraction are:zm——— 773"

Example 2: Resolve ?4%22%(2,{—9 into Partial Fractions.

Solution: Here, denominator = x* + 2x* + 9 = (* + 2x + 3) (* — 2x + 3) . .
42 +8x 42 + 8
X+22+9 7 (P+2x+3)(P-2x+3)
Suppose
4x* + 8x Ax+ B Cx+D

(P +2x+3)@-2x+3) 42543 P —2x+3
= 42 +8x=(dx+B) (¥ — 2x+3)+(Cx+D) (* +2x +3)
= 42+8=A+C)xX*+(-24+B +2C+D)x
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+(3A - 2B+ 3C+12D) x + 3B + 3D )
which is an identity in x. ' :
Equating the coefficients of X, %%, x,x° in I, we have

0 = A+C @)
4 =-2A+B+2C+D (ii)
8§ = 3A-2B+3C+2D (iif)
0 = 3B+3D @iv)

Solving (i), (ii), (iii) and (iv), we get

[A=1], [B=2],[C=-1] and

; : x+2 —x—2
Hence the partial fractions are: % Y A YT

Exerclse 5 3

N Gl S A R N
Reso]ve the followmg into Partial Fractions:

1 9x —7 5 1 - 3x+7

* @+ (x+3) @+ D+ P+ +3)
A X +15 - X 6 Z+1

(P +2x+5)(x-1) K+ Hx+2) e |
- ' L) 3 1 9 x*

e 205 (6 T D2 ) IR S 6 S D 2 09) ) (P
10. 5;1—2-5*—-3-

X+x +1

Case IV: when Q(x) has repeated irreducible quadratic factors
If the polynomial Q(x) contains a repeated irreducible quadrauc factors

PG)

(ax’ + bx + ¢)', n > 2 and n is a +ve integer, then 00 may be written as the
following identity:

Pa) _ _Ax+Bi . _Ax+B Apx+ By
Ox) ax*tbx+c (ax’+bx+c) (a,,x2+ bx +c)"

Where A1, B\, 42, By, ...., An, Bx are numbers to be found. The method is explained
through the following example:
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X : : :
Example 1: Resolve ] into partial fractions.

4x Ax+B Cx+D E
Solution: Let C+ 1P x-1) = ULl e o2+ 1)2+x_1

= 42 = (Ax+B)0*+D(x— 1) + (Cx+D)(x— 1)+ ECZ+ 1) (D)
= 4%=A+E)x*+(~A+B) X+ (A-B+C+2E)X |

+(~A+B-C+D)x+(-B-D+E) (ii)
Putting x—1=0 = x=1 in (1), we get
4=E(1+1) Fies

uating the coefficients of x*,x*, X%, x, in (ii), we get
g

0= A+E = A=-E = [A=-]]
0=-A+B = B=A =>

4 = A—-B+C+2E

= C=4-A+B-2E=4+1-1-2 = [C=2]

0= -A+B-C+D '
= D= A-B+C=-1+1+2=2 = [D=2]

—x=1 2x+2 1
Bl =1

Hence partial fractions are: ~27-—

-7

Resolve into P Frations: EEE OY Ginliioq ot ¢
'1" XP+2x+2 5 2
: E+x+1) P+ (x-1)
2 2x-5 ; 8x* :
S *+2P°(x-2) @@+ 1D)PA-2)
i C 4A43946245c 6 2t =320 = 4x

(x=1) (¢ +x+1) ({r2+2)"'(«1c+1)2
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Sequences and Series

2 ]

b-4ae

6.1 Introduction

Sequences also called Progressions, are used to represent ordered lists of
numbers. As the members of a sequence are in a definite order, so a correspondence

can be established by matching them one by one with the numbers 1, 2, 3, 4, ..... For
example, if the sequence is 1, 4, 7, 10, ...., nth member, then such a correspondence
can be set up as shown in the diagram below: -

Position the member of the sequence

1 —1

2 >4

3 >7

4 >10

n— > nth member

Thus a sequence is a function whose domain is a subset of the set of natural
numbers. A sequence is a special type of a function from a subset of N to 7R or C.
Sometimes, the domain of a sequence is taken to be a subset of the set
{0, 1, 2, 3,...}, i.e., the set of non-negative integers. If all members of a sequence are
real numbers, then it is called a real sequence.

Sequences are usually named with letters a,b,c etc., and n is used instead of x

as a variable. If a natural number n belongs to the domain of a sequence a, the
corresponding element in its range is denoted byd,. For convenience, a special

notation a, is adopted fora(n)and the symbol{a,}or a;,a;,8;....,,...1S used to
represent the sequence a. The elements in the range of the sequence{a, }are called its

terms; that is, a,is the first term, a,the second term and a,the nth term or the

general term. _ : .
: For example, the terms of the: seqﬁence {n+(=1)"}can be written by
assigning to n, the values 1, 2, 3, ... . If we denote the sequence by {b, }, then

' b, =n+(-1)" and we have

P ———

P S ——
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b,=1+(=1)'=1-1=0

b, =2+(=1)>=2+1=3

b, =3+(-1)°=3-1=2

b, =4+(-1)*=4+1=5etc.

If the domain of a sequence is a finite se Jhen the sequence is called a finite
sequence otherwise, an infinite sequcnc:c

o _',:teseqmncehas no lastterm. :
-ﬁ. _.,u‘,‘!;_’?.’r R Mo o 2l

Some examples of sequences are;

) 149,121 i) 13579,..21 )

V18715310 V) " 16.20.56... L 11 L
3°5°7°9

The sequences (i) and (ii) are finite whereas the sequences (iii) to (vi) are

infinite.

6.2 Types of Sequences

If we are able to find a pattern from the given initial terms of a sequence, then
we can deduce a rule or formula for the terms of the sequence.

We can find any term of the given sequence giving corresponding value to n
in the nth / general term a, of a sequence.

Example 1: Write first two, 21st and 26th terms of the sequence whose general
term is (—=1)"*'.

Solution: Given that a, = (—1)"*'. For getting required terms, we put
n=12, 21 and26 .
a =D =1
a, =(=)*' =-1
ay = (-1 211 _ |
Ay = (—=1)*" =—1
Examplez' Find the sequence if a, —a,, =n+landa, =14
Solution: Putting n=2,3,4 in

a,—a,,=n+l,we havq




‘_,__.‘."—.‘._.-_. - B e —

l._ Bod et e e

3.

a,—a =3 (i)
a,—a,=4 (i)
a,—a, = | (i)
From (iii), a; =a, -5
=14-5=9 ¢ a, =14)
From (i), a,=a,—-4
=9-4=5 (ra,=9)
And from (i), @, =a, =3
=5-3=2.

Thus the sequence is 2,5,9,14,20,..

erte the ﬁrst four terms of the followmg sequences, if

i) a,=2n-3 i) a,=(=D"n?* i) a,=(-1)"(2n-3)
n 1
iv =3n-5 v = i -
Ja, = ) e R
vii) a,—a, ,=n+2,a, =2 viii) a, =na, ;,a, =1
ix) a,=(@n+1a,_,a =1 X) L

a,=——-—
a+(n-1)d

Find the indicated terms of the following sequences;

i) 261117,..a, i)  1312,60,... a i) 1.

3 k]

il
4’3

2
iv) LL-3,5-7.9, ¢y Vo 1-35-79-1l.a,

Find the next two terms of the following sequences;
E7.9,12.16, 7 S ii) 1,3,7,15,31,...

i) —1,2,12,40,... iv) 1,35 =70 =i

a,

Chapter 6: Sequences and Series

A T
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6.3 Arithmetic Progression (A.P)

A sequence {a, }is an Arithmetic Sequence or Arithmetic rogression (A.P), if -

a,—a,,is the same number for all ne Nandn>1. The difference

a, —a, (n>1)i.e., the difference of two consecutive terms of an A.P., is called the
common difference and is usually denoted by d.

Rule for the nth term of an A.P.:
We know that @, —a, , =d (n>1),
which implies a, =a,_ ,+d (n>1)....... (1)
Putting n =2,3,4,...in (i) we get
a,=a,+d=a,+2-1)d
a,=a, +d=(a, +d)+d
=a,+2d =a,+(3-1)d
a,=a,+d =(a +2d)+d
=aq,+3d=a,+(@4-1)d
Thus we conclude that
where a, is the first term of the sequence.
We have observed that
a, =a,+0d =a,+(1-1)d
a,=a,+d=a,+(2-1)d
a,=a,+d=a +3-1)d
a,=a,+d =a, +(@4-1)d
Thus a,,a, +d,a, +24d,..., a, +(n—1)d + ... is a general arithmetic sequence,
with a,,d as the first term and common difference respectively.

ST

e e e
SR !E'}.?ﬁ’
.,,. =

Example 1: Find the general term and the eleventh term of the A.P. whose first term

and the common difference are 2 and -3 respectively. Also write its first four terms.
Solution: Here, a, =2,d =-3

We know that a, = a, +(n—1)d,

Jos
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50 a =2+(n-1)(-3)=2-3n+3

or a,=5-3n ()
Thus the general term of the A.P.is 5—3n.
Putting n =11in (i), we have
a,, =5-3(11)
=5-33=-28
We can find a,,a,,a, by putting n=2,3,4in (i), that is,
a,=5-312)=-1
a, =5-33)=-4
a,=5-34)=-7
Hence the first four terms of the sequence are: 2-1,-4,-7.
Example 2: If the 5th term of an A.P. is 13 and 17th term is 49, find a, and a,;.
Solution: Given ag =13 and a,; = 49.
Putting n=>5 in a, = a, + (n—1)d , we have
a;=a, +(5-1)d,
as =a, +4d
or 13=a, +4d R (1)
Also a,, =a, +(17-1)d
or 49 =a, +16d

or ‘49 = (a, +4d)+12d
or  49=13+12d (by (1))
= 12d=36 = d=3

From (i), @, =13-4d=13-4(3)=1
Thus a,=1+(13-1)3=37 and

a, =1+(n-13=3n-2
Example 3: Find the number of terms in the AP. if; @, =3,d =7 anda, =59.
Solution: Using a, = a, +(n—1d, we have
59 =3+ (n—1)x7 (wa,=59,a, =3andd =7)
or 56=(n—-1)x7=>n-1=8 = n=9
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Thus the terms in the A.P. are 9.

Example 4: If a, , =3n—11, find the nth term of the sequence.

Solution: Putting n=3,45 in a, ,=3n-11, we have

a, =3x3-11=-2

a, =3x4-11=1

a,=3x5-11=4

Thus a,=a, +(n-1)d =-2+n-1)Xx3 (va,=-2andd =3)
-3;1—5
Exercnse 6.2

Write the first four terms of the following arlt.hmetlc sequences, if
1) ' a, = Sand other three consecutive terms are 23,26,29

ii) a, =17anda, =37 iii) 3a, =7a, anda,, =33
If @; ', =2n-5, find the nth term of the sequence.
-If the 5th term of an A P. is 16 and the 20th term is 46, what is its 12th term?

" Find the 13th term of the sequence x,1,2— x,3—2x, ...

Find the 18th term of the A.P. if its 6th term is 19 and the 9th term is 31.
Which term of the AP.  5,2,—1,... is —85?

Which term of the AP. —24,10,...is 148?

How many terms are there in the A.P. in which a, =11,a, =68,d =3?

If the nth term of the A.P. is 3n—1, find the A.P.

Determine whether (i)—19, (ii) 2 are the terms of the A.P. 17, 13,9, ... or not.
If'l, m, n are the pth, gth and rth terms of an A.P., show that -

1) l(g—r)+m(r—p)+n(p—q)=0 ii) pm—n)+q(n—D+r(l—-m)=0

Find the nth term of the sequence,

GG

1 2

If———l—and-l—aremAP oAt
a b c a+c
1 1

I d—l— are m AP, show that the common difference is A
AL DI ) Jiip 2ac
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6.4 Arithmetic Mean (A.M)

A number A is said to be the A.M. between the two numbers @ and b if a. A, b ;
are in A.P. If dis the common difference of this A P., then A~ a=d and h-A = d. !

Thus A-a=b-A ;

orv" 2A=a+b : 1=

W TEARYAE D]

In general we can say that a,is the A.M. between a,_,and a,,,, ie.,

-p g ?’T
i |

Example 1: Find three A.Ms between /2 and 3v2 . = :

Solution: Let A, A,, A, be three A.Ms between +/2 and 3v2 .Then ' \

\/E,AI,AE,A3 3J2arein A.P.
Here a, =42, as =32

Using a, =a, +(n—1)d, we get

a; =a, +(5-1)d
or 3J5=~/5+4d
= 32-2=44 |
22 2 1 Hy
= d=——=—=—
4 2 2
1 2+1 3 i
Now A =a+d=vJ2+—="—1=—_ !
1 7GR
3l 4 i
Ay =A+d=—=r=Sc o5 i
I V2 2 2 i

1 4%1 5 i -
A —A2+d_2'\[2—+ e I;‘_
: 2 2 411

3 5 ;P Egip Ty o
.Therefore, —,2+/2,—— are three A.Ms between v2and 3W2. !
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6.4.1 n Arithmetic Means Between two given numbers
The n numbers A, 4,,A,,...., A, are called n arithmetic means between a and
bif a,A,A,,A,,....,A,,bare in AP.
Example 2: Find n A.Ms between a and b.
Solution: Let A, A,,A,,...., A, be n arithmetic means between a and b.
Then a,A,A,,A;,....,A,,barein AP. in which @, =a anda,,, =b, 50
b=a+ ((n+2)—1)d (where d is the common difference of the A.P.)
=a+(n+1)d
b—a
n+l1

= d=

Thus A, = e

n+l n+l
= b—a =(n—l)a+2b
n+l1 n+1

= 2l
Aa=a+3ﬁl=a+3{'b a}=(ﬂ 2)a+3b
n+l n+l

A,=a+nd=a+n(

b—a a+nb
n+l n+l

1. Find A M. between
)  3/Sand5y5 - i)  x-3andx+5
iii) 1-x+x* and 1+ x+x°

2.  If58are two A.Ms between a and b, find @ and b.

12
3.  Find6AMs. between2and5. 4. Find four A.Ms. between ~2 and ik
5. Insert7 AMs. between4and 8, 6. Find three AMs between 3 and 1.
A Find 7 so that -"al_+g'_| may be the A.M. between a and b.
all'- + n=

3-' ShoW that the sum of n A.Ms. between a and b is equal to n times their A.M.
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6.5 Series

I

1

The sum of an indicated number of terms in a sequence is called a series. For .

example, the sum of the first seven terms of the sequence {n* }is the series, |
1+4+9+16+25+36+49. '

The above series is also named as the 7th partial sum of the sequence {r 2)e \

i

1

If the number of terms in a series is finite, then the series is called a finite

series, while a series consisting of an unlimited number of terms is termed as an
infinite series.

Sum of first n terms of an arithmetic series: {
For any sequence {a,}, we have, b
S,=a,+a,+a;+..+a,

If {a,}is an A.P., then S, can be written with usual notations as:

S, =a,+(a +d)+(a, +2d)+...+(a, —2d)+(a,—d)+a, @)

e c———

If we write the terms of the series in the reverse order, the sum of n terms |
remains the same, that is,

S, =a,+(a,—-d)+(a, —2d)+...+(a, +2d)+(a, +d) +aq, (i1)

Adding (i) and (ii), we get

28, =(a, t+a,)+(a +a,)+(a +a,)+..+(a, +a,)+(a, +a,)+(a +a,)
=(a,+a,)+(a, +a,)+(a, +a,)+.... tonterms

(1i1)

AN T S T

e e

i (Iv)
Example 1: Find the 19th term and the partial sum of 19 terms of the arithmetic
7/ 13
Tag —+5+—+...
series: 2+ 2 2

k
B
5
;._.
i

Solution: Here ¢, =2 and d =a, —q, =%
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Using a, =a, +(n—1)d, we have,

ay =2+(19—1)%
3
= 2+18[5)=2+27 =29

Using S,#%(a,+an),wehave. :

589
2
Example 2: Find the arithmetic series if its fifth term is 19 and S, =a, +1.

Solution: Given that a, =19, that s,

19 19
Sl9 =?(2+29)=—2-(31) =

a,+4d =19 0)

Using the other given condition, we have,
Ss = %[2.41l +(4-1d] =a, +1

or 4a, +6d =a, +8d +1
3a,—1=2d : (i)
Substitution 2d =3a, —lin (i), gives
a, +2(3a, -1)=19
or 7a,=2l=>a,=3
From (i), we have,
4d =19-a, =19-3=16
= - d=4
Thus the series is 3+7 +11+15+19+...
Example 3: How many terms of the series —9—6—3+0+...amount to 66?
Solution: Here @, =—9 and d =3 as —6—(-9)=3and—3-(-6)=3.
Let S, =66 5

_Using S, = %[24:1 +(n—1)d], we have,




66 = g[z(—g) +(n—-1).3]
or 132=n[3n-211=44=n(n—-"7)

2 T+449+176 7++225
or n"-Tn-44=0 =n= =
2 2
=l—2l—5=>n—11—4

But z cannot be negative in this case, so n = 11, that is, the sum of eleven
terms amount to 66.

Exerciéef 4

'1. Fmd the sum of all the 1ntegral multiples of 3 betwccn 4 and 97
2. Sum the series

3 5
i) —3+(-D+143+5+....4a ii) = oD T
16 ‘\/E JE 13
i)  LIl+141+1.71+.. +a,.  iv) —8—3%+1+....-i;a“
V) (x—a)+(x+a)+(x+3a)+.. ' 10 nterms. .
; 1 1 1 :
V1 + T P to n terms.
) 1-x 1-x 1+J;
4 1 1 15
vii) - + +... to n terms.
: 1+J; 1-x 1—\[; ;
3 How many terms of the series by
i) -7+ (=5 +(-3)+... ; amount to 65?7 - -
ii) T+ D+ (D+... “amount to 1147
4. Sum the series

1) 3+ =il:E9+ 1= 13+15+1'I‘r 1945 * to 3n terms.

ii) 144—7+10+13-16+19+22—-25+... .to 3n terms.
S.  Find the sum of 20 terms of the series whose 7th term is 3r+l.
6. If Sy=n(2n-1), then find the series.

7. The ratio of the sums of n terms of two series in A.P. is 3n+2:n+1. Find the

ratio of tieir 8th terms. .
If §,,S,,S;are the sums of 2n,3n,5n terms of an A P., show that

SEES (SIS )
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9.

10.

11.
12.

13.

14.
15.
16.
17..

18.
6.6

Obtain the sum of all integers in the first 1000 integers which are neither
divisible by 5 nor by 2. _

Sgand S,are the sums of the first eight and nine terms of an A.P., find S,if
508, =635; anda, =2 (Hint : Sy =S; +a,)

The sum of 9 terms of an A.P. is 171 and its eighth term is 31. Find the series.
The sum of Sgand S;is 203 and S, — S, =49, §, and S, being the sums of the

first 7 and 9 terms of an A.P. respectively. Determine the series.
S, and S,are the sums of the first 7 and 9 terms of an A.P. respectively. If

3y = 18 and a, =20, find the series.
S; 1 .
The sum of three numbers in an A.P. is 24 and their product is 440. Find the
numbers.
Find four numbers in A.P. whose sum is 32 and the sum of whose squares is
276.
Find the five numbers in A.P. whose sum is 25 and the sum of whose squares
is 135.
The sum of the 6th and 8th terms of an A.P. is 40 and the product of 4th and
7th terms is 220. Find the A.P.

1 1

If a?, b*and c?are in A.P., show that ; > SeinAP.

b+c c+a a+b
Word Problems on A.P.

Example 1: Tickets for a certain show were printed bearing numbers from 1 to 100.
Odd number tickets were sold by receiving paisas equal to thrice of the number on the
ticket while even number tickets were issued by receiving paisas equal to twice of the
number on the ticket. How much amount was received by the issuing agency?
Solution: Let S; and S, be the amounts received for odd number and even number

tickets respectively., Them’

S, =3[1+3+5+...4+99] and S, =2[2+4+6+...+100]

Thus S, + 8§, = 3X%(l+99) + 2x%(2+100),[': There are 50 terms in each series]

=7500+5100 =12600

Hence the total amount received by the issuing agency = 12600 paisas = Rs.126
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Example 2: A man repays his loan of Rs. 1120 by paying Rs. 15 in the first
installment and then increases the payment by Rs. 10 every month. How long will it -
take to clear his loan?
Solution: It is given that the first installment (in Rs.) is 15 and the monthly increase
in payment (in Rs.) is 10.
Here aq,=15and d =10 |
Let the time required (in months) to clear his loan be n. Then
S =1120, that i,

1120=%[2x15+(n—1)10]=%[30+(n-1)10]

:%x10[3+(n-1)] =5n(n+2)

or 224=n(n+2)=>n>+2n-224=0

-2+44+896 —2++900
2

42

-2%30
2
=14,-16
But 7 can not be negative, so n =14, that is, the time required to clear his loan

is 14 months.
Example 3: A manufacturer of radio sets produced 625 units in the 4th year and 700 l
units in the 7th year. Assuming that production uniformly increases by a fixed :
number every year, find ; J
i) The production in the first year ii) The total production in 8 years J
_ iii) The production in the 11th year. |
Solution: Let a,be the number of units produced in the first year and d be the
uniform increase in production every year,Then:the sequence of products in the
successive years 1S |
ajaptdia;t 2d5

AL

By the given conditions, we have
a, =625 -and a, =700, that is, .
a, +3d =625 : (4)
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i)

ii)

1ii)

and a,+6d =700 (II)

Subtracting (I) from (II), we get
3d=75=>d=25
From (I), a, +3(25)=625= a, =625-75=550

Thus the production in the first year is 550 units.
S, = %[Zx 550+ (8—1)25]
=4[1100+175] =4 [1275]=5100

Thus the production in 8 years is 5100 units.
a,=a, +(11-1)d

=550+10x25=550+250 =800
Thus the producuon in thc l lth year 1s 800 umts

5.

A man deposnts In a bank Rs 10 in the ﬁrst. -rﬁ;mth Rs 15 in lhe second
month; Rs. 20 in the third month and so on. Find how much he will have
deposited in the bank by the 9th month.

378 trees are planted in rows in the shape of an isosceles triangle, the numbers

in successive rows decreasing by one from the base to the top. How many

trees are there in the row which forms the base of the triangle?

‘A man borrows Rs. 1100 and agree to repay with a total interest of Rs. 230 in

14 installments, each installment being lgsé than the preceding by Rs. 10.
What should be his first installment? |

A clock strikes once when its hour hand is at one, twice when it is at two and
so on. How many times does the clock strike in twelve hours?

A student saves Rs.12 at the end of the first week and goes on increasing his
saving Rs.4 weekly. After how many weeks will he be able to save Rs.2100?
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6. An object falling from rest, falls 9 meters during the first second, 27 meters

during the next second, 45 meters during the third second and so on.
1) How far will it fall during the fifth second?
i1) How far will it fall up to the fifth second?

74 An investor earned Rs.6000 for year 1980 and Rs.12000 for year 1990 on the
same investment. If his earning have increased by the same amount each year,
how much income he has received from the investment over the past eleven
years?

8. The sum of interior angles of polygons having sides 3,4,5,...etc. form an A.P.

Find the sum of the interior angles for a 16 sided polygon.

9. -~ The prize money Rs. 60,000 will be distributed among the eight teams

according to their positions determined in the match-series. The award
" increases by the same amount for each higher position. If the last place team is
given Rs.4000, how much will be awarded to the first place team?

10.  An equilateral triangular base is filled by placing eight balls in the first row, 7
balls in the second row and so on with one ball in the last row. After this base
layer, second layer is formed by placing 7 balls in _its first row, 6 balls in its
second row and so on with one ball in its last row. Continuing this process, a
pyramid of balls is formed with one ball on top. How many balls are there in

the pyramid?
6.7 Geometric Progression (G.P)

: : : e L
A sequence {a,}is a geometric sequence or geometric progression if —*-is

n-1

the same non-zero number forall ne N and n>1.The quotient I is usually

n=1'

denoted by r and is called common ratio of the G.P .It is clear that  is the ratio of

“n_js defined only if

any term of the G.P., to its predecessor. The common ratio r =
: a

n-1

- a,, #0,1i.e., no term of the geometric sequence is zero.

— e e e
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Rule for nth term of a G.P.: Each term after the first term is an r multiple of its
preceding term. Thus we have,

e B YA
= e ek 0
a,=a,r=(a,r)r=a,r° =a,r

a,=a,r=(a,r*)r=a,r’ =a,r*

- which is the general term of a G.P.

Example 1: Find the 5th term of the G.P., 3,6,12,...

Solution: Here a, =3,a, =6,a, =12, therefore, r= SO 2

a, 3
Using a, =a,r"" for n=5, we have,
=g —3 2% =821 =48

: 2 8 —64
Example 2: Find q, if a, =Eand Gi=—g of a G.P.

Solution: To find a, we have to find a, and r .

Using a, =a,r""

()]
a, =a;r‘t=a,rdy so ar’ — I(ii)
27
—64
AndRa —g'rs\—aq. 15, S0 ar’=— iii
7 1 1 1 729 ( )

a, —64/729 8 ONH(EG T S
Thi L= = ] [ ST ! =r
Y o O ( 3] { 3 r]
2
=5 r=_T (taking only real value of r)
et S - :
Put r ——Em(u), to obtain g, that is,

- ﬂ-—.—i =_8_ —
. N9 T g m

Now putting a, = —1 and r = ——:23'— in (i), we get,

-
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2 n-1 3 2 n-1 2 n=1
=(-1) -= =DED"Y = | =D = | for n>1
a, ()( 3) ()(){3J ()(3] or n

Example 3: If the numbers 1, 4 and 3 are added to there consecutive terms of G.P,
the resulting numbers are in A.P. Find the numbers if their sum is 13.

Solution: = Let  a,ar,ar”be three consecutive numbers of the G.P. Thén
at+ar+ar’=13 = a(l+r+r?)=13 (1)
and  a+l,ar+4,ar’ +3arein A.P., according to the given condition.

(a+1)+(ar*+3)

2
= 2ar+8=ar*+a+4

=a(r:-2r+1)=4
= a(r*+r+1)-3ar=4 ( r2—2r+l:(r2-+f+1)—3")
= 13-3ar=4 (- a(l+r+r?)=13)

or dar=13-4 = ar=3 (i)

Thus ar+4=

B ey
e e e (00 T

Using a= £ , (1) becomes
r

2 @+r+rt)=13
=

or 3r2—10r+3=0

_10++100-36 _10+8

= r E
s 6 6

1
=3 o0rr=—
r Ao

If r=3then a=1 (usingar=3)
andif r= % then a =9 (using ar =3)

Thus the numbers are 1,3,9 or 9,3,1

x T W L .
o AT Ay

Find the 5th term of the GP.:  3.612,...
4

2. Find the 11th term of the sequence, 1+ i,Z,T—;
; +i
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3.

8‘

10.

11.

12.

13.

14.

6.8

Find the 12th term of 1+1i, 2i,—2+ 2i,...

- Find the 11th term of the sequence, 1+, 2, 2(1-1i)

If an automobile depreciates in values 5% évery year, at the end of 4.years
what is the value of the automobile purchased for Rs. 12,0007

1 2 2 + P X
Which term of the sequence: x> — y?, x+ y,—>, _is x+ )’9 9
X5y ixry)
If a,b,c,d are in G.P, prove that

i) a-b,b—c,c—darein G.P. . ii) a>—b%b*—c*,c*—d*arein G.P.

i) @ +b%,b* +c¢*,c* +d*are in G.P.

Show that the reciprocals of the terms of the geometric sequence

A SN .
a,;a,r*,a,;r',... form another geometric sequence.

" Find the nth term of the geometric sequence if; 252 i anda, = i

a e 9
Find three, consecutive numbers in G.P whose sum is 26 and their product is 216.
If the sum of the four consecutive terms of a G.P is 80 and A.M of the second
and the fourth of them is 30. Find the terms.

1001 1

If —,— and —are in G.P. show that the common ratio is + 'i
a b c (%

If the numbers 1,4 and 3 are subtracted from three consecutive terms of an
A.P., the resulting numbers are in G.P. Find the numbers if their sum is 21.
If+three consecutive numbers in A.P. are increased by 1,4,15 respectively, the

resulting numbers are in G.P. Find the original numbers if their sum is 6.

Geometric Mean

A number G is * said to be a geometric mean (G.M.) between two numbers a

and bif a, G, b are in G.P. Therefore
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6.8.1 n Geometric Means Between two given numbers _
The n numbers G,,G,,G;,....,G, are called n geometric means between a and

bif a,G!,Gz,GE_,‘....,G“,b are in G.P.

(n+2)-1

Thus we have, b=ar where r is the common ratio,

1
or ar""=b

Example 1: Find the geometric mean between 4 and 16,
Solution: Here a = 4, b =16, therefore

| | G=tab =/4x16
- =+/64 =8 |
Thus the geometric mean may be +8 or 8. Inserting each of o GIMs
between 4 and 16, e have two geometric sequences 48,16 and 4, —8, 16. In the first

case r = 2 and in the second case r =-2. g :
: . . ; 1 WAL T ‘i\it:‘r&’isj
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Example 2: Insert three G.Ms. between 2 and % ;

Solution: Let G,,G,,G, be three G.Ms between 2 and % . Therefore 2, G,,G,,G -;

are in G.P. Here a, =2, as =-;-andn =35

Using a. =a,r"" we have,
n 1
5-1 . =
as =a,r ie, a,=a;r (i)

Now substituting the values of a;and g, in (i) we have
1 4 4 1 o
—=2r" or r =— il
2 (i1)

Taking square root of (ii), we get,

So, we have f:_l 2t Ly e
- . = OLIrs= 5
= r=iL or r=iLi

V2 V2

1 2 3

‘When r—ﬁ,thenG ZJ_ \/—G,— [ﬁ] —lG3—2[T] =T

: 43 e
When r-:/—_i-,thenG Z(J_) J—G Z(J_] =7{T] =—
When r—ﬁ,then(} ZXJ_- 21, G2 ?{J_] = 1(}3 (TJ —

When 1= en G, - s l[f] e __

el

R

Example 3: If a,b,c and d are in G.P. show that a+b,b+c, c+d are in G.P.
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Solution: Since a,b,c are in G.P therefore,

ac = b? 3l @
Also b,c,d are in G.P., so we have ' )
y bd =c* - (i) . f
Multiplying both sides of (ii) by b, we get

b*d = bc* = acd = bc? SN (SFac= D)

= ad =bc (111) 1

Now ad +bc =bc+bc [ ad = bc] '
ie, ad+bc=2bc ' (iv)
Adding (i), (ii), and (iv), we have

ac+bd +ad +bc =b* +c* +2bc

or (a+b)c+(a+b)d =(b+c)? . 1
", ot (a+b)(c+d)=(b+c)? ' |
= a+b,b+c,c+d are in G.P. s |

1.. FdeM between

i) -2 and 8 ii) —2i and 8i
2. Insert two G.Ms. between :

i) 1 and 8 ii) 2 and 16
3. Insert three G.Ms. between

i) l and 16 - i) 2 and 32
4. Insert four real geometric means between 3 and 96.
5

If both x and y are positive distinct real numbers, show: that the geornetnc
mean between x any vy is less than their anthmetic _mean.

a"+b"
‘“‘;_b,,."
7. The A.M. of two positive integral numbers exceeds their (posmve) GM by 2

and their sum is 20, find the numbers.
8. The A.M. between two numbers is 5 and their (positive) G.M. is 4 Fmd the

numbers. . :
6.9 Sum of n terms of a Geometric Series
For any sequence {a, } we have
S,=a,+ta, t+a, +...+a,,
- If the sequence {a, }is a geometric sequence, then ; e
S,=a, +ar+ar®+..+ar"" Q)

6. For what value of n,: is the positive geonietnc roean between a ‘and‘ﬂu

:
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Multiplying both sides of (i) by 1-r, we get

A-nS, =0-r){a, +ar+ar’ +..+ar""'}
=(1-rN{a,(d+r+r*+...+r" "))
=a{(l-r)A+r+r*+..+r""}
=a{(+r+r+..+r"7)=(r+r*+..+1"))

:al(l_r")

or S,=M—) (r+1l)
1—-r
For convenience we use:
Su=al(1——rl if |;-,<1
1-r
and s,,_=“'—(’—Ii if  |r[>1

Example 1: Find the sum of  terms of the geometric series if a, = (—3)(%} -

Solution: We can write (—3)[%] asz

£

5
n-1
Identifying (—% (%] with a,r"?,
we have, q:‘—iss—an;l L;%<l_
4]
—pn 5 5
Thus §, _a,(l )
-r I_}_
B 5
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6 5 A (1 28\
()] e

Example 2: The growth of a certain plant is 5% of its height monthly; When will the

plant be of 4.41 cm if its initial height is 4 cm?
Solution: Let the initial height be 7/ cm. Then at the end of one month, the plant will

be ofhieght [+ !x—§— =i+L=21! : Hal Puy i |
100 20 20 :
LA 8
The helghtof the plant at the end of second month = —[+—IX—
200 20 100

2
= 2t w2
20 20) (20

So, the sequence of height at the end of successive month is:

21! i 21 I
0 20
2] PN o] 21 21
Here - (70]'; ( O) ('/‘OJ [ "1:%[" 20]

IS A (%} x4 (.- initial height = 4 cm)
n 2 . 23 .
or 21878 ¢ AU which gives n=2
20) ~ 4 400 |20

6.10 The Infinite Geometric Series
Consider the series
a+tar+ar’+..+ar +..,

i) (r#1)
1-r

But we do not know how to add infinitely many terms of the series.
If S, — alimitas n — eothen the series is said to be convergent.

If §, increases indefinitely as n becomes very large then we say that

then S,=a,+tar+..+tar" =

-

S '-,d-oes not exist and the series is said to be divergent:

-



Textbook of Algebra and Trigonometry

Casel: Iflr

<1,

then r" can be made as small as we like by taking n sufficiently large, that is,
r"—=0 as noe

a v
L when n — e

Obviously S, — g

—

. . a .
In other words we can say that the series converges to the sum -I—‘ that is,
=T

Casell: If |r|>1,
then " does not tend to be zero when 71— oo
. 1.e., S, does not tend to be a limit and the series does not converge in this
case so the series is divergent.
For example, if we take q; =1, r =2,
then the series, will be
1+2+4+8+...
Fandiwe haye S =1'8)=3/S:=7.5,=15,....§, =2" —1,ie, §,,5;,55,.s5x
1S a sequence of ever increasing numbers.
In other word we can say that S increases indefinitely as n — oo. Thus the
series does not converge. -
CaseIll: If r=1, then the series becomes
a,+a,+a, +a, +..
and S, = na, . In this case §, does not tend to a limit when n — e and
: the series does not converge.
CaseIV: If r=-1, then the series becomes
a,—a, ta,—a,+a,—a, +..
‘a,=(=1)"a;
foT Gy & 2!
; xe, ' §. =a,if nis positive odd integer.

: | S. =0if u‘i!j positive even integer.

TR
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Thus S, does not tend to be a definite number when n — 0. In such a case we

say that the series is oscillatory.
Example 3: Find the sum of the infinite G.P. 2,+/2,1,...

Solution: Here a, =2

e Ch V2l d

Z=_2'=Ea“ |
2 1
S = r—c<1
Pt [ W ]
<53

22 A E T 20D
= = = =4+22
2-1 (2-p 2+  2-1° *

Example 4: Convert the recurring decimal 2.23 into an equivalent common fraction

(vulgur fraction).
Solution: 223=2232323 ..
=2+{.23+.0023+.000023 +...}

| 23 0023 _ 1

=2+ =

g 23 100
100

1002380
99 99

_198+23_ 221
9 9

Example 5: The sum of an infinite geometric series is half the sum of the squares of

its terms. If the sum of its first two terms is % , find the series.

Solution: Let the series be :
a, +artar’+.. @
Then the series whose terms are the squares of the terms of the above series is
a’+a’r*+a’rt+ .. : N = (i) :
Let S, and §, be the sum of the series (i) and (ii) respectively: Then
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Casel: If | r|<1,
then r" can be made as small as we like by taking n sufficiently large, that is,
r" =0 as n—ooo

Obviously S, — IL when n —
—r

. . a :
In other words we can say that the series converges to the sum —— that is,
=

Casell: If |r|>1,

then " does not tend to be zero when 7 — oo
- 1e., S, does not tend to be a limit and the series does not converge in this
case so the series is divergent.
For example, if we take a, =1, r =2,
then the series, will be
1+2+4+8+...
Bandiwe haverSi= 18 =3 S =7/ =15,....,5. =27 =1,i.e., S;,5;,53,-::+5x
1S a sequence of ever increasing numbers.
In other word we can say that S, increases indefinitely as n — o= . Thus the
series does not converge. |
CaseIll: If r=1, then the series becomes
a1-|;a|+a,+a1+... .
and S, = na, . In this case S, does not tend to a limit when n — ccand
the series does not cdnverge.
‘CaseIV: If r =-1, then the series becomes
a,—a,+a,-a,+a,—a, +..
B e (1)
bt cele My oTs IETY X 1 =
Le., ' § =g, if nis positive odd integer.

E,
t’:.

|l
51
t

Cn

= 0if n is positive even integer.
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Thus S, does not tend to be a definite number when n — <. In such a case we |
say that the series is oscillatory.
Example 3: Find the sum of the infinite G.P. 2, AP

Solution: Here g, =2

‘ 2 1 '

242 22(2+1) _4+2V2
“2-1 2-h)@2+1)  2-1 =4+2V2

Example 4: Convert the recurring decimal 2.23 into an equivalent common fraction
(vulgur fraction).
Solution: 2.23=2232323%%

=2+{.23+.0023 +.000023 +...}

&

' 23 0023 1

=2+ e

ol 23 100

100

L 10023 8 E3 |
99 99 :
_198+23 221 %
9 9 ‘

Example 5: The sum of an infinite geometric series is half the sum of the squares of "
its terms. If the sum of its first two terms is —?2- , find the series. : 1

Solution: Let the series be

a+ar+ar’+. @
Then the serles whose terms are the squares of the terms of the above series is. :
a’ +a’r’+a’r+ . : - (i

Let S and §, be the sum of the series (i) and (i) respectwely, 'Then '
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S far (i)

1-r2

By the first given condition, we have.

1 a 188 as
S =—8,=>—"1=—|—
RO SE [ 2{1-#]

=a, =2(1+r) V)

and S, @iv)

From the other given condition, we get
9 9 .
atar=—=a(l+r)=— A
174 ) (+7) 2 (vi1)
Substituting a, = 2(1+r)in (vi), gives

2(1+r) (1+r)=%=> 1+7)? =%—

=.'»1+ir=i-i
2
1S
=>r=———
R0
For r=-i,|r]=-5—>l,sowccarmottakc r:—--s-—.
2 2 2
' 1 1
Ifr=5,thcn a1=2(l+5)=3 o a=2(1+7r)]
| e 3 3 '
Hence the series is 3+~—+?+—8—+....-
Example 6: If a=1—x+x2—x3+---_-_~ x| <1
b=1+x+x*+x" +... ' x| <1
_ show that 2ab=a+b . '
Solution: a = (olr=—%)
TN 1-(=x)
U DAL DS ()
a

1+x

&



&

by

o

and b= C-r=x)
l X
=] = — ok (ii)
b
Adding (i) and (ii), we obtain
2= %+ % , which implies that

2ab = a+b

Find the sum of first 15 terms of the geometric sequence l,% %
Sum to n terms, the series

1) .2+.22+.222_+... i1) 3+33+333+...

Sum to n terms the series

i) 1+(a+b)+(a® +ab+b*)+(a’ +a’b+ab® +b°)+...

ii) r+(+kr*+A+k+k*)r*+..
Sum the series 2+ (1—i) +(l }+ to 8 terms.
i

Find the sums of the following infinite geometric series:
i) l+i+i+ )l+-1—+ . + .. m)2+3+1+-2—
SEF25125 2 4 8 4 2 3

iv) 2+14+05+.. V) 4+2J_+2+J5+1+... vi) 0.1+0.05+0.025+...
Find vulgar fractions equivalent to the following recurring decimals.

i) 134 i DO 5 i) 0.259

iv) 1.53 v) 059 vi) 1.147

Find the sum'to mﬁmty of the series; r+(1+k)r +(1+k+k2)r a5

r and k being proper fractions.

1

If y= ?+411x +8x +..and if 0<x<2 thenprovethat x= 12y

D)
> ;

Ify:——x-+ix2+ g X3 +... s.nd 1f0-<.wc<-?l thenshowthat x-—éll_
- 3 9 27 25 20+ )

Chapter 6: Sequences and Series IR
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10.

11.

12.

13.

14.

A ball is dropped from a height of 27 meters and it rebounds two-third of the
distance it falls. If it continues to fall in the same way what distance will it
travel before coming to rest?

‘What distance will a ball travel before coming to rest if it is dropped from a

height of 7S meters and after each fall it rebounds %of the distance it fell?
If y=1.42x+4x* +8x> +...

i) Show that x=2— =1
2y
1) Find the interval in which the series is convergent.

2
If y=1+—+2—+..
2 4

i)  Show that x= z("—"l}
y

ii) Find the interval in which the series is convergent.
The sum of an infinite geometric series is 9 and the sum of the squares of its

terms is % Find the series.

6.11 Word Problems on G.P.

Example 1: A man deposits in a bank Rs. 20 in the first year; Rs. 40 in the second
year; Rs. 80 in the third year and so on. Find the amount he will have deposited in the
bank by the seventh year. '

Solution: The deposits in the successive years are

20,40,80,... which is a geometric sequence with
a, =20 and r=2

The sum of the seven terms of the above sequence is the total amount

deposited in the bank upto the seventh year, so we have to find S, , that s,

2027 -1) _ 20(2" -1)

the required deposit in Rs. = 0 -
- =20(128-1)= 20)(127
gese . =2540

'ﬂlus the amount de.posned in the bank upto the seventh year is Rs. 2540.
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Example 2: A person invests Rs. 2000/- at 4% interest compounded annually. What
total amount will he get after 5 years? '
Solution: Let the principal amount be PThen -

the interest for the first year = P x% = Px(.04)

The total amount at the end of the first year = P+ PX(.04) = P(1+ .(_)4)
The interest for the second year =[P(l + 0.4)x(.04)] and
the total amount at the end of second year =[P(1+.04)]+[P(1+ 074)] X (.04)
= P(1+.04)(1+.04) = P(1+.04)*
Similarly the total amount at the end of third year = P(1+.04)°.
Thus the sequence for total amounts at the end of successive years is
P(1+.04), P(1+.04)%, P(1+.04)°,...

The amount at the end of the ﬁfth year is the fifth term of the above geométric
sequence, that is

=[P(1+.04)].0+ 04)’ = (ra;=a,r " and a, = P(1+.04))
= P(1+.04)° |
As P=2000, so the required total amount in Rs. =2000x(1+ .04)° ,
=2000%(1.216653)=2433.31
Example 3: The popﬁ]ation of a big town is 972405 at present and four years ago

it was 800,000. Find its rate of increase if it increased geometrically. §
Solution: Let the rate of increase be r% annually Then the sequence of populatlon is

|
;
!
|

2
800,000, 800, 1 -———1 800,000%| I+ — | ,...~
0’000({ + 100)! ( 100)

and its fifth term = 972405
In this case we have,

n-1
a, =a le -+ ratiois | I+ ——
100 *1" 00 )|
3 . 5-1
Thus 972405 = 800,000(1 + 1_36] (a5 = 972405 and a, = 800,000)

g (1+_1r_‘='9724’05
100 800,000
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i 4 4
: r Y _ 194481 rY (21 ro2
1.e. I+— | === 1+— | =| = P s s
( 100} 160000 [ 100] (20]_ e 10011120
S 21 1

100 20 20

=r=5
Hence the rate of increase is 5%.

£ 20 SR e
A man deposxts in a bank Rs. 8 in the first year, Rs 24 in the second year
Rs.72 in the third year and so on. Find the amount he will have deposited in
the bank by the fifth year.

A man borrows Rs. 32760 without interest and agrees to repay the loan in
installments, each installment being twice the preceding one. Find the amount
of the last installment, if the amount of the first installment is Rs.8.

The population of a certain-village is 62500. What will be its population after

3 years if it increases geometrically at the rate of 4% annually?

"The enrollment of a famous school doubled after every eight years from 1970

to 1994. If the enrollment was 6000 in 1994, what was its enrollment in 19707

A singular cholera bacteria produces two complete bacteria in %hours. If we

start with a colony of A bacteria, how many bacteria will we have in n hours?

Joining the mid points of the sides of an equilateral triangle, an equilateral
triangle having half the perimeter of the original triangle is obtained. We form
a sequence of nested equilateral triangles in the manner described above with

. the original triangle having perimeter —Z- What will be the total perimeter of

all the triangles formed in this way?

6.12 Harmonic Progression (H.P)

A sequence of numbers is called a Harmonic Sequence or Harmonic

Progression if the reciprocals of its terms are in arithmetic progression. The sequence

a0l
] 1.3.5,

-

= is a harmonic sequence since their reciprocals 1,3,5,7 are in A.P.
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Remember that the reciprocal of zero is not defined, so zero can not be the
term of a harmonic sequence.

The general form of a harmonic sequence is taken as:
1 1 1

; 3 t 03 " whose nth term is ——
a a td a;t2divs" a,+(n—-1)d

L
D85 IRV

Example 1: Find the nth and 8th terms of H.P ;

Solution: The reciprocals of the terms of the sequence,

l,l,-l-,... are 2.5.8,...
255w 8

The numbers 2,58, ... are A.P,, so
a=2andd=5-2=3

Putting these values in a, = @, + (n—1)d, we have

a,=2+@n-1).3
=3n-1

1 1.
Thus the nth term of the given sequence = —= , i
a, 3n-1

And substituting n = 8in

3 L T we get the 8th term of the given H.P. which
n —

D, 71t
3x8-1 23
Alternatively, a; of the AP.=a, +(8-1)d

=2+73=23
Thus the 8th term of the given H.P. = 5137

Example 2: If the 4th term and 7th term of an H.P. are L and irespecti\,'ely, find

is

13 25
the sequence.

Solution: Since the 4th term of the H.P. = % and its 7th term= -22—5, therefore the 4th

and 7th terms of the corresponding A.P. are % and -222 respectively.

e
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Now taking a,, the first term and d, the common difference of the
corresponding A.P, we have,

13
a, +3d = B (1)
il e 2—25 (if)
Subtracting (i) from (ii), gives
W=2-2=6=d=2
From (i), we get
a, —%—341' = %—6—%

Thus a,of the AP. =g, +d=%+2=%

And  a,ofthe AP. =a +2d = —+2(2)

\o|mr"’|"““

Hence the required H.P. is % —i—

6.12.1 Harmonic Mean: A number H is said to be the harmonic mean (HM)
between two numbers a and b if a, H b are in H.P.

Lcta,?bethetwonumbcrsandeetheerM The lé%aremAP
1.1 b+a
therefore, ——=4_b __ab —d1b
. H 2 2 2ab

For example, HM. between 3 and 7 is
2x3x7 _2x21 21
347 TOR RS




6.12.2 n Harmonic Means between two numbers

H,,H,,H,,...., H,are called n harmonic means (H.Ms) between a and b if
a,H,,H,,H,,...,H, ,bare in HP. If we want to insert 7 H.Ms. between a and b, we

first find n A.Ms. A}, A,,...., A, between ik and -jl)- then take their reciprocals to get n

a

H.Ms. between a and b, that is, -I—L
A A, A

a and b.

1

Example 3: Find three harmonic means between -;n'and 7

Solution: Let A, A,,A, be three A.Ms. between S and 17,that s,
STANAS AT arem AP.

Using a, =a; + (n—1) d, we get,
17=5+(5-1d (. as=17andaq, =95)

4d =12
= d=3
Thus A =5+3=8A4, —5+2(D~11and,43-5+3(3)—14‘

Hence li 1 are the required harmonic means.
81114

Example 4: Find n H.Ms between a and b

Solution: Let A,A,,A,,.....,A be n AMs b;:twecn land%.
a

Then l,A,,AQ,Ay....,A",% are in AP,
a

Using a, =a; + (n— 1) d, we get,

l=i+(n+2—l)¢:l
b a ;

a-b
ab(n+1)
Thus +d“—- a-b b(n+l)+(a—b)_ nb+a

or (n+1)d=l—_—=>d=
b a

; ! will be the required n H.Ms. between

a ab(n+) ab(n+1)°  ab(n+l)

!
|
f
|

i

i "
Chaptcr 6: Sequences and Series L
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A =l+2d:l+2[ a-b sz(n+1)+2(a-b) _(n=Db+2a
a a ab(n+1) ab(n+1) ab(n+1)

A3=l+3d=l+3 a=b \_b(rn+D)+3(a-b) _(n—-2)b+3a
a a ab(n+1) ab(n+1) ab(n+1)

o 1

A"=—+nd=—+n[ a-b ]=b(”+l)+n(a—b)_ b+na

a a |ab(n+1) ab(n+1)  ab(n+1)
Hence n H.Ms between a and b are:
ab(n+1) ab(n+1) ab(n+1) ab(n+1)

nb+a ‘(n—-1)b+2a’ (n-2)b+3a’""" b+na
6.13 Relations between Arithmetic, Geometric and
Harmonic Means

We know that for any two numbers @ and b

a+bG +\/_ dH=2(¢'b
2 a+b

We first find Ax H  that is,

Thus A,G,H arein G.P. Forcxample if
a=-landb=35, then

A=_12+5=2, G =+J=Ix5 =+V5i .
s 1) S T

AxH =2x;25=—5 and G2 = (£+/5i)2 =5i* =5

It follows that AXH=G?> and A,G, H are in G.P,




Chapter 6: Sequences and Series

|

Now we show that A > H for any two distinct positive real numbers.

AsHif &t 2ab
2 a+b
_or (a+b)* > 4ab

or  (a+b)*—4ab>0=>(a—b)*>0

which is true because a —bis a real number and the square of a real number is
always positive.

Also A >Gif a,bare any two distinct positive real numbers.

A>GifaT+b>i~/E |

or  a+bt2Vab>0 o |
=  (azxvb)?>o0. i

which is true because v/a + /b are non zero real numbers and the squares of
real numbers are always positive.
Now we prove that
1) A>G > H if a, b are any two distinct positive real numbers and

G =4/ab:

i) A<G<Hifa,bare any two distinct negative real numbers and
G =—-1/ab.
- To prove (i), we first show that 4 > G, i.e.,

A>Gif“;’b>m

= Ga-b)2 >0

which is true (write the missing steps as given above)

‘Thus A>G: (1)
Again G>H,
if Jab > 2
a+b

or  a+b>2\ab
. = " a+b-2Jab>0
= (Wa-Vb)*>0
"v'g,l_xjch is true since va — Vb is a real number.
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Thus G>H (2)
From (1) and (2), we have

A>G>H
To prove (i1), we show that

A<Gif

-ﬂ <—+Jab

Let a=-mandb=—nwhere m and n are positive real numbers. Then

"”‘2" 2 <—JEm)(=n)

or -"‘;"<-M="’;’”>Jr§§
= Wm—-n)*>0 (See part (i)
which is true, that is.
A<G
Similarly,we can prove that
G<H

Hence A<G< H -

o=

LR T S TR L WO e e R g SRR s
nic sequence
i) l)i!l!-" ii) __l, :__19_1 3 ele
35S T 3.3
2t Find the 12th terms of the following harmonic sequences
e Ty LA
. 2‘5‘8,.“ 3,9,6,...
33 Insert five harmonic means between the following given numbers,
: =7 2 2 1 1
i) —and — ii) —and —
5 13 4 24 :
4. Insert four harmonic means between the following given numbers.
: 1 1 7 7
i —and — ii —and — iii 4 and 20
) 3 23 ) 3 11 - )

S If the 7th and 10th terms of an H.P. are %and %respectively, find its 14th term.

B
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10.

11.

12.

13.

14.

15.

16.

17.

18.

The first term of an H.P. is —% and the fifth term is % Find its 9th term

If 5 is the harmonic mean between 2 and b, find b.

If the numbers — 1 . and L are in harmonic sequence, find k.
k'2k+1 ° 4k-1
n+l n+l

Find n so that ———— may be H.M. between a and b.
a"+b"

If a*,b” and ¢’ are in A.P. show that a+b,c+a and b+ care in H.P.

The sum of the first and fifth terms of the harmonic sequence is -;—, if the first

term is é—, find the sequence.

If A,G and H are the arithmetic, geometric and harmonic means between a
and b respectively, show that G* = AH .

Find A,G,H and show that G* = A.H.if

i) a=-2,b=-6 ii) a=2i,b=4i iii) a=9,b=4
Find A,G,H and verifythat ASG>H (G>0),if

i) a=2,b=8 ii) a=£,b=£
5 5
Findl A,G,H and ver{fy that A<G<H (G<0),if
)  a=-2,b=-% i Heim
; 5 5

If the HM and A.M. between two numbers are 4 and 2— respectively, find

the numbers.

If the (positive) G.M. and H.M. between two numbers are 4 and % find the

numbers.

4
If the numbers - 51— and 513 are subtracted from the three consecutive terms of a

~ GP, the resulting numbers are in H.P. Find the numbers if their product is El-_’; s

|ﬁ 3

l-‘-:

|
|
|
|
|
|
i

-
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6.14 Sigma Notation (or Summation Notation)
The Greek letter Y. (sigma) is used to denote sums of different types . For

n
example the notation Za; is used to express the sum

i=m
Ap + Ay +Apyy +....+a, and the sum expression
1+3+5+ ....to n terms.

is writtenas » (2k-1),

k=1
where 2k —1 is the kth term of the sum and & is called the index of summation. ‘1’
and n are called the lower limit and the upper limit of summation respectively. The
sum of the first n natural numbers, the sum of squares of the first n natural numbers
and the sum of the cubes of the first n natural numbers are expressed in sigma

notation as:

1+243+...+n=Yk

il k=1

i 42243 440’ =Yk
§ . k=1

i P+22+33+..+n*=) k*

k=1
We evaluate Z [k™ = (k —1)"] for any positive integer m and shall use this
L=t
result to find out formulas for three expressions stated above.

i [(kl'li’ __(k _l)ﬂl]= (lm _Uflf)+(2fll _lm')+ (3"! _2M)+"“

k=]

+(n=D)" = (=" ]+ [n" —(n=D)"]=n"
ey D K" —(k-D)")=n"
k=1

If m=1,
then 3 [k~ (k-1)']=n"

k=1

SL.C i l=n




6.15 To Find the Formulae for the Sums

i)

| iii)

D a3k i) SRS iif) ik’
k=l k=1 k=1

We know that k* —(k—1)* =2k —1 (A)
Taking summation on both sides of (A) from k =1to n, we have

n

3 [k -(k=D1=Y @k-1)
k=1 k=1

ie., n’ =2i k—n _ ¢ l=n)
k=1

k=1

n
or 22 k=n®+n
k=1

Thus 2 e nn+1)

ket 2
Consider the identity
k* —(k—1)> =3k> -3k +1 (B)

Taking summation of (B) on both sides from k =1 to n, we get

i [k’ —(k—l)“]=i (Bk* =3k +1)
k=1 k=1
fieht 2 =3ik3—3ik +n
k=1 k=1
or 3ik3 =n’—n +.3ik
k=1 k=1

=n(n+1)(n—1)+3x

n(n+1)

=n(n+ l)[n -1+ i] _n(n+D@n+1)
_ T ;

Thus ikz 2 n(n+1)2n+1)

k=1 6
We know that (k—1)* = k* —4k® + 6k> — 4k +1and this identity can he
written as: (©)

k* = (k=1)* =4k* — 6k* + 4k —1
Taking summation on both sides of (C), from & =1 to n, we get,
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il

n n

| DS k*=(k-1*1=) (4k®-6k*+4k-1)
-:, k=1 k=1
i ie, n* =4Zk3 -6 k* +4z":k—n

! k=] k=]

k=1
5 or 421(3 =u4+n+62k2—4ik :
k=1 k=1 k=1

=n(n+1)(n® —-n+l)+6><M_:5S&+_D_4X "(”2+1)
|
=n(n+D[n° —n+1+2n+1-2]

=n(n+1)(n* +n)= n(n+1).n(n+1)
| Thus 3 k° = 20+ DF =l:n(n + 1)]2
ir_ el 4 2
Example 1: Find the sum of the series 12 +33 +53 +...to n terms’
Solution: 7, = (2k —1)* (o 1+ Gk=-1)2=2k-1)
=8k® —12k> +6k—1
. Let S, denote the sum of n terms of the given series, then

Sn =2 Tt
k=1

or  §,=) (8k>—12k*+6k—1)

_ k=1

| =8) K 123 k2 63 h- S
ri k=1 < T k=1 '

ti k=1

I 5 g[ n(n+l):r ks 2[n(n+l)(2n+l)]+ 6[n(n+1):|_n
; 2 6 2

=2n*(n+1)>* =2n(n+1)(2n+1)+3n(n+1)—n
=2n*(n* +2n+1)—2n(2n* +3n+1)+n(3n+3)—n
=2n[(n’ +2n* + n) - (2n* +3n+ D] +nBn+3-1)

_ =2n[n’ -2n-1]+n(3n+2)

8 =n[2n’ —4n—-2+3n+2]

=n[2n’ —n] = n.[n(2n* -1)]

=n?[2n%-1]

S R e

o 1
Example 2: Find the sum of 7 terms of series whose nth terms is 7> +-g—~n-2 +En+l




Solution: Given that

15.

16.

T2=n +—3—n2 +-;—n+1

3 1

Thus T =k3 +—k?>+—k+1
2 2
1,821
and S, -Z (+ k" + k1)

-):;a 23K+ Sk B1
k=1 253 k=l:
_n (n+l)' +1xn(n+l)(2n+l)+lxn(n+l)+n
4 Q= 6 2 2

=%[n(n2 +2n+1)+(2n% +3n+ D+ (n+1)+4]

e 2 2
: =4(n t2n +tn+2n°+3nt+1t+tn+1+4)

= %(113 +4n° +5n+6)

Exercme _6 ~11

Sum the followmg series upto n terms.

IX14+2%4+3xX7+... 2. 1X3+4+3%X6+5%X9+...
1x4+2x7+3x10+... 4. 3><5+5><9+7><13+.:.
12 £33 5% &0 6. 22452182 +i

2X12 +4x2% +6%3% +... 8 Ix2% +5x3% +7x4* +
2%4xT+3x6x10+4%x8x13+...
IX4%X6+4xTxX10+7%x10%x14 +...

1+1+2)+(1+243)+... - 12.  P+02+2)+12+22+3%)+...
2+(245)+(2+5+8)+... 14.  Sum the series.

i) 12 -2%+32 4% + ..+ (2n—1)% — (2n)?

i) 12-32+452-7*+..+4n-3)> —(4n-1)>

1N 02N AT o a2

1i1) -1—+ % + 3 +...to n terms

Find the sum to n terms of the series whose nth terms are given.

1) 3n® +n+1 i1) n* +4n+1

Given nth terms of the series, find the sum to 27 terms.
i) 3n? +2n+1 i) « *n*+2n+3

|

Chapter 6: Sequences and Series _



Permutation, Combination
and Probability

7.1 Introduction

The factorial notation was introduced by Christian Kramp (1760 — 1826) in
1808.This notation will be frequently used in this chapter as well as in finding the
Binomial Coefficients in later chapter. Let us have an introduction of factorial
notation.

Let n be a positive integer. Then the product n(n — 1)(n — 2) ... 3 . 2. 1
is denoted by n! or In and read as n factorial.

Thatis, |n! = n(n— D —2)....3.2.1]

For example,
Jigi=wlis
2= ] =2 =.2U=0.1!
3! = 321 =N6 = 31i=1319
4! = 432.1 = 29 = 4! =4.3!
SL=5432.1 = 120 =5!=54!

and 6' = 6.5‘4.3.2.1 = ]”U =>6' 65'
2% Thus’foraposnwemtegern wédeﬁnenfactonal as" i

n' —n (n—i)' where 0'*1

LAY

Example 1: Evaluate %

st 8.7.65432.1
Solution: ¢y = “LuaoT =56

Example 2: Write 8.7.6.5 in the factorial form

7.6.5432.1 8!
Solution: 8.7.6.5 = 8——43—2'*,—"' =31

Example 3: Evaluate % :

i (9.8.7)6!

22010 ok 18y
GL3LS . 662D,

Solution:
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9l _ 987.654321 .,
o 6131 654321321 "
Evaluate each of the following:
| |
i 4! i) 6! iiii) % iv) -l:;—),;
(10,0 6 e Y] S |11
ST Gis) ) are UL Sype
2 9! 15! 3 =
ix) 200-2) X) 150 (15 15)! )ﬂ)-b—! xii) 401!
Write each of the following in the factorial form:
i) 654 i) 12.11.10 iii) 20.19.18.17
) 109 8.7.6 . 52.51.50.49
MM ) o Vi) 4321
1 =il
Vil) Ui =1 = 2) I D DY R ) D B e R %(;)i" )

X) nn—1Dn-2)....n—r+1)

Permutation
Suppose we like to find the number of different ways

‘to name the triangle with vertices A, B and C.

constructing a tree diagram as follows:

The various possible ways are obtained by
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C—A
Start B<
A—C

_A—B
c<
B—41
To determine the possible ways, we count the paths of the tree, beginning
from the start to the end of each branch. So, we get 6 different names of triangle.
ABC, ACB, BCA, BAC, CAB, CBA.
Thus there are six possible ways.to write the name of the triangle with vertices
A, B and C. _
Explanation: In the figure, we can write any one of the three vertices A, B, C at first
place. After writing at first place any one of the three vertices, two vertices are left.

So, there are two choices to write at second place. After writing the vertices at two
places, there is just one vertex left. So, we can write only one vertex at third place.

Another Way of Explanation: Think of the three places as shown DDD
Since we can write any one of the three vertices at first place, so it is written

in 3 different ways as shown. DD

Now two vertices are left. So, corresponding to each way of writing at first
place, there are two ways of writing at second place as shown. D
Now just one vertex is left. So, we can write at third place only one vertex in
' one way as shown. '

The total number of possible ways (arrangements) is the product 3.2.1 = 6.
This example illustrates the fundamental principle of counting.

Fundamental Principle of Counting:

' Suppose A and B are two events. The first event A can occur in p different
:ways. After A has occurred, B can occur in g different ways. The number of
ways that the two events can occur is the product p.q.

s
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This principle can be extended to three or more events. For instance, the
number of ways that three events A, B and C can occur is the product p.q.r.

One important application of the Fundamental Principle of Counting is to
determine the number of ways that n objects can be arranged in order. An ordering
(arrangement) of n objects is called a permutation of the objects.

A permutation of n different objects is an ordering (arrangement) of the
objects such that one object is first, one is second, one is third and so on.

According to Fundamental Principle of Counting:

i)  Three books can be arranged in a row taken

all at a time =3.2.1 = 3! ways

ii) Number of ways of writing the letters of the WORD taken

all ata time =4.3.2.1 =4!

Each arrangement is called a permutation. Now we have the following
definition.

A permutation of n different objects taken r (< n) at a time is an

arrangement of the r objects. Generally it is denoted by "P. or P(n,r).
1

(n-r)!

Prove that: ”P,: =pn-1)n-2)...(n—-r+1) =

Proof: As there are n different objects fo fill up r places. So, the first place can be
filled in n ways. Since repetitions are not allowed, the second place can be filled in
(n—1) ways, the third place is filled in (»—2) ways and so on. The rth place has n—(r— 1)
= n — r + 1 choices to be filled in. Therefore, by the fundamental principle of

counting, r places can be filled by n different objects in n(n — 1)(n —2) ....(n=r+ 1)

ways
"P, = nn—-1)n-=2)...(n—=r+1)
3 nn—=1)n=-2)....n=r+ DNn-nn—-r—1)....3.2.1
w m-nNn-r—1)....32.1
Y n! '
2 e sy )]

which completes the proof. T
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! - ..'._h- If r=n, then

i n ! 1
*’ QTS .(n--'-'-‘n)! i

= ndifferent objects can be arranged taken all at a time in n! ways.
Example 1 How many different 4-digit numbers can be formed out of the
digits 1, 2, 3, 4, 5, 6, when no digit is repeated?

Solution: The total number of digits = 6

The digits forming each number = 4.

So, the required number of 4-digit numbers is given by:

6! 6! 6.543.2.1
C=s 2l a2l s 6.5.43 = 360

5p,
Example 2: How many signals can be made with 4-different flags when any number
of them are to be used at a time?

Solution: The number of flags = 4
Number of signals using 1 flag = ‘P, = 4

Number of signals using 2 flags = ‘P, = 4.3 =12
Number of signals using 3 flags = Py = 432 = 24
Number of signals using 4 flags = ‘Py = 4321 =24
~ Total Number of signals = 4+ 12+24+24 = 64.

Example 3: In how many ways can a set of 4 different mathematics books and 5
different physics books be placed on a shelf with a space for 9 books, if all books on
the same subject are kept together?

Solution: 4 different Mathematics books can be arranged among themselves in 4!
ways. 5 different Physics books can be arranged among themselves in 5! ways.To
every one way of arranging 4 mathematics books there are 5! ways of arranging 5
physics books. The books in the two qub_;ects can be arranged subject-wise in 2!
ways. _
So the number of ways of arranging the books as given by.
4! x5!x2! 4X3x2X1X5%x4%x3x2x1%2x1

5760
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11.

12.

 Evaluate the foIlowmg
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Exercise 7.2

i)t 2p, ii) '°Py iii)  12Ps iv) '°P; v) °Pg
Find the value of n when: - '

i) "P,=30, ii) "P,=11.109 iii) "Ps:"'P3=9:1

Prove from the first principle that:

i) "Pr=n."'Puy D) "Pr="Prar. TP

How many signals can be given by 5 flags of different colours, using 3 flags at
a time?

How many signals can be given by 6 flags of different colours when any
number of flags can be used at a time?

How many words can be formed from the letters of the following words using
all letters when no letter is to be repeated:

1) PLANE ii) OBJECT iii) FASTING?

How many 3-digit numbers can be formed by using each one of the digits 2, 3,
5,7, 9 only once?

Find the numbers greater than 23000 that can be formed from the digits
1,2, 3,5, 6, without repeating any digit.

HINT: The first two digits on L.H.S. will be 23 etc.

Find the number of 5-digit numbers that can be formed from the digits
1, 2,4, 6, 8 (when no digit is repeated), but

- 1)~ the digits 2 and 8 are next to each other;

ii)  the digits 2 and 8 are not next to each other.

How many 6-digit numbers can be formed, without repeating any digit from I
the digits 0, 1, 2, 3, 4, 5? In how many of them will
0 be at the tens place?

How many 5-digit multiples of 5 can be formed from the digits 2, 3, 5, 7.9,
when no digit is repeated.

In how many ways can 8 books including 2 on English be arranged on a shelf
in such a way that the English books are never together -,
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13. Find the number of arrangements of 3 books on English and 5 books on Urdu
for placing them on a shelf such that the books on the same subject are
together.

14. In how many ways can 5 boys and 4 girls be seated on a bench so that the girls
and the boys occupy alternate seats? ' :

7.2.1 Permutation of Things Not All Different
Suppose we have to find the permutation of the letters of the word BITTER,

using all the letters in it. We see that all the letters of the word BITTER are not
different and it has 2 Ts in it. Obviously, the interchanging of Ts in any permutation,
say BITTER, will not form a new permutation. However, if the two Ts are replaced
by T, and T, we get the following two permutation of BITTER

BIT|T2ER and BszT]ER

Similarly, the replacement of the two Ts by T, and T, in any other
permutation will give rise to 2 permutation.

Now, BIT | T2ER consists of 6 different letters which can be permuted among
themselves in 6! different ways. Hence the number of permutation of the letters of the

1
word BITTER taken all at a time = %— = &423_2_1_ = 360.

This example guides us to discover the method of finding the permutation of n
things all of which are not different. Suppose that out of » things, n; are alike of one
kind and n; are alike of second kind and the rest of them are all different. Let x be the
required number of permutation. Replacing n; alike things by n; different things and
n alike things by n different things, we shall get all the » things distinct from each
other which can be permuted among themselves in n! ways. As n; different things can
be permuted among themselves in (n;)! ways and n; different things can be arranged
among themselves in (n7)! ways, so because of the replacément suggested above,
x permutation would increase to x X (n;)! X (n2)! number of ways.

xXm)!Xm)! "= (n)!

3 an st gif ol
Hence x = (n)! X (n2)! — (m, nz)
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Cor Ifthema:en; ahke thmgs of one{

and nj alike things of third kind, then the num‘b ‘f‘ﬁﬁﬁhu n'of n'thir

takenall atatunels glven by A 1 iorhiisg «%‘” £
i : assldonn ® i"_:.'-_l' ::,‘?";‘ L ;;;(j Ak S
| L e i
e o i BTG

CLEHR _,.'..m._.l.\_‘.,.l".:L_i RIRNENE

Example 1: .In how many ways can be letters of the word MISSISSIPPI be arranged
when all the letters are.to be used?
Solution: Number of letters in MISSISSIPPI = 11
In MISSISSIPPI,
I is repeated 4 times
S is repeated 4 times
P is repeated 2 times

M comes only once.

: ] 11
Required number of permutation = [4, 421

an!
~ @I X @ x@)!x (1),

—34650 ways |

'i

7.2.2 Circular Permutation |
So far we have been studying permutation of things which can be represented

by the points on a straight line. We shall now study the permutation of things which
can be represented by the points on a circle. The permutation of things which can be
represented by the points on a circle are called Circular Permutation. .

The method of finding circular permutation is illustrated by the following
examples.
Example 2: In how many ways can 5 persons be seated at a round table.
Solution: LetA,B,C,D.E be the 5 persons

One of the ways of seating them around a
table is shown in the adjoining figure. If each
person moves one or two or more places to the left

or the right,' they will, no doubt, be occupying

different seats, but their positions relative to each

~ other will remain the same.



lﬁA Textbook of Algebra and Trigonometry

So, when A occupies a certain seat, the remaining 4 persons will be permuting
their seats among themselves in 4! ways.

Hence the number of arrangements = 4! = 24

Example 3: In how many ways can a necklace of 8 beads of different colours be
made?

Solution: The number of beads = 8

The number of arrangements of 8 beads in the necklace will be like the seating
of 8 persons round a table.

= The number of such necklaces (fixing one of the beads) =

Now suppose the beads are a, b, ¢, d, ¢, f, g, h and the necklace is as shown in
Fig. (i) below:

. Figure (i) - ' Figure (ii)

By flipping the necklace we get the necklace as shown in figure (ii). We
observe that the two arrangements of the beads are actually the same.

; 1
Hence the required number of necklaces = 5 X (7N! = 2520

Rl Exercnse 7.3 :
L How many arrangemcnts of the letters of the followmg words taken all
together, can be made:

i) PAKPATTAN ii) PAKISTAN
ii) MATHEMATICS iv) ASSASSINATION?

2. How many permutation of the letters of the word PANAMA can be made, if P
| is to be the first letter in each arrangement?

3.  How many arrangements of the letters of the word ATTACKED can be m_a_qe,
if each arrangement begins with C and ends with K?

4. How many numbers greater than 1000,000 can be formed from the dlglts 0 2
2,2,3,4,4?7
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5. How many 6-digit numbers can be formed from the digits 2, 2, 3, 3, 4, 4?
How many of them will lie between 400,000 and 430,000?

6. 11 members of a club form 4 committees of 3, 4, 2, 2 members so that no
member is a member of more than one committee. Find the number of
committees.

7. The D.C.Os of 11 districts meet to discuss the law and order situation in their

districts. In how many ways can they be seated at a round table, when two
particular D.C.Os insist on sitting together?

8. The Governor of the Punjab calls a meeting of 12 officers. In how many ways
can they be seated at a round table?

9. ' Fatima invites 14 people to a dinner. There are 9 males and 5 females who are
scated at two ditlerent tables so that guests of one sex sit at one round table
and the guests of the other sex at the second table. Find the number of ways in
which all gests are seated.

10.  Find the number of ways in which 5 men and 5 women can be sated at a round
table in such a way that no two persons of the same sex sit together.

11.  In how many ways can 4 keys be arranged on a circular key ring?
12.  How many necklaces can be made from 6 beads of different colours?.

7.3 Combinations _
While counting the number of possible permutation of a set of objects. the
order is important. But there are situations where order is immaterial. For example

i) ABC, ACB, BAC, BCA, CAB, CBA are the sixnames of the triangle:
whose vertices are A, B and C. We notice that inspite of the different
arrangements of the vertices of the tnangle they represent one and the
same triangle.

ii) The 11 players of a cricket team can be arranged in 11! ways, but they
are players of the same single team.

So, we are interested in the membership of the committee (group) and
not in the way the members are listed (arranged).

Therefore, a combination of n different objects taken r at a time
is a set of r objects.

: The number of combinations of n dlfferent objects taken r at a time is denoted
by "C. or C(n,r)or ( r] and is given by
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Proof: There are "C, combmahons of n dxfferent objects taken r at a time. Each
combination consists of r different objects which can be permuted among themselves
in r! ways. So, each combination will give rise to 7! permutation. Thus there will be
"C,x r! permutation of n different objects taken r at a time.

: "c,x l=iap

n! n!
n | . n £
= G (n=nrt °° T ort(n=n)!
Which completes the proof
___7_1_'______ _ ! S 1'15
S G AT
S nl G e e -
R OG- 0)' -"=-:01"n:-.-'"‘=w1":

7.3.1 Complementary Combination
Prove that: "C, = "C,_,
Proof: If from »n different objects, we select r objects then (n — r) objects are left.

Corresponding to every combination of r objects, there is a combination of
(n — r) objects and vice versa.

Thus the number of combinations of n objects taken at a time is equal to the
‘number of combinations of » objects taken (n —r) ata tlme

- “Cr =, ﬂcﬂ_r
a £ - n!
Other wise: "C,., = TN (o o
n! n!
(n—r)! r' r!(n—r)!

=> a nCn_r = nCr
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TR e e P [ 5 L. ©).a1=66
Example 1: If "Cg="C2, findn.
Solution: We know that "C,="C,—,
"Cy="Cr-s (1)
But it is given that "Cs="Ci, (ii)
From (i) and (ii), we conclude that
otas B LGy
= n—-8 = 12
no= 220

Example 2: Find the number of the diagonals of a 6-sided figure. ;
Solution: A 6-sided figure has 6 vertices. Joining any two vertices we get a line

segment -

: 6! %
Number of line segments = %c, = 2041 = 15

But these line segments include 6 sides of the figure

Number of diagonals = 15-6 = 9

Example 3: Prove that: "'C,+"'C. ="C,
Solution: LHS. = "'C+""'Cwmi

h—l h—l
p=1-r " [r=1ln=r

In—-1 In—-1
rr—1 In—r—1" E=1in =) =il

[n—1 1 1 [n—1
Lo sl | n—r+r
|r—1[n—r—l[r n—rrk—lli—-r—ll:r(n_.r)il

nin—1
n

— = — = "
Sl (i) in=in=il lz|n—r G
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10.

= R.HS.

-1 n

n-1 n
Hence C,+ Co= C,

Exercise 7.4
Evaluate the following:
DGy i) *cp i) "Cj
Find the value of n, when
NN GsE=IECn i)y "Cro = 1—2*%*1‘1‘ i) "Cr2i = "Cs
Find the values of n and r, when
DS EE=35M and B Ps= 210
NEREGHETC N C, = 3106111
How many (a) diagonals and (b) triangles can be formed by joining the
vertices of the polygon having:
1) Ssides i1) 8 sides iii) 12 sides?
The members of a club are 12 boys and 8 girls. In how many ways can a
committee of 3 boys and 2 girls be formed?

How many committees of 5 members can be chosen from a group of 8 persons
when each committee must include 2 particular persons?

In how many ways can a hockey team of 11 players be selected out of 15
players? How many of them will include a particular player?

Show that: 'Cy; + '5Cio = "¢y,

There are 8 men and 10 women members of a club. How many committees of
numbers can be formed ?

i) 4 women ii) atthe most4 women iii) atleast 4 women

Prove that "C.+"Cro = 52, (G-
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7.4 Probability

We live in an uncertain world where very many events cannot be predicted
with complete certainty. e.g.

i) In a cloudy weather, we cannot be sure whether it will or will not rain.
However, we can say that there is 1 chance out of 2 that the rain will
fall. '

i) There are 6 theorems on circle out of which one theorem is asked in the
Secondary School Examination. Evidently, there is 1 chance out of 6
that a particular theorem will be asked in the examination.

In simple situations, we are guided by our experience or intuition. However, -

we cannot be sure about our predictions. Never-the-less, in more complex situations,
we cannot depend upon guess work and we need more powerful tools for analyzing
the situations and adopting the safer path for the achievement of our goals.

In order to guide in solving complex problems of every day life, two French
Mathematicians, BLAISE PASCAL (1623-62) and PIERRE DE FERMAT (1601 —
65), introduced probability theory. A very simple definition of probability is given
below: 5

Probability is the numerical evaluation of a chance that a particular event
would occur.

This definition is too vague to be of any practical use in estimating the chance
of the occurrence of a particular event in a given situation. But before giving a
comprehensive definition of probability we must understand some terms connected
with probability.

Sample Space and Events: The set S consisting of all possible outcomes of a
given experiment is called the sample space. A particular outcome is called an event
and usually denoted by E. An event E is a subset of the sample

space S. For example,

i) In tossing a fair coin, the possible outcomes are a Head () or a Tail
(T') and it is written as: S= {H, T } = _n(S) =2

ii) In rolling a die the possible outcomes are 1 dot, 2 dots. 3 duis, »

4 dots, 5 dots or 6 dots on the top.

et T e
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S = {1,2,3,4,5,6} = n(S)=6
To get an even number 2, 4 or 6 is such an event and is written as:
E = {2,4,6} =n(E)=3

Mutually Exclusive Events: If a sample space § = {1, 3, 5, 7, 9} and an event
A = {1, 3, 5} and another event B = {9}, then A and B are disjoint sets and they are
said to be mutually exclusive events. In tossing a coin, the sample space
S={H,T}. Now, ifevent A = {H } and event B = {T }, then A and B are mutually
exclusive events.

Equally Likely Events: We know that if a fair coin is tossed, the chance of head
appearing on the top is the same as that of the tail. We say that these two events are
equally likely. Similarly, if a die, which is a perfect unloaded cube is rolled, then the
face containing 2 dots is as likely to be on the top as the face containing 5 dots. The
same will be the case with any other pair of faces. In general, if two events A and B
occur in an experiment, then A and B are said to be equally likely events if each
one of them has equal number of chances of occurrence.

The following definition of Probability was given by a French Mathematiqian,
P.S. Laplace (1749 — 1827) and it has been accepted as a standard definition by the
‘mathematicians all over the world:

If a random experiment produces / different but equally likely out-comes and

n outcomes out of them are favourable to the occurrence of the event E, then the
probability of the occurrence of the event E is denoted as P(E) such that

Since the number of outcomes in an event is less than or equal to the number

of outcomes in the sample space, the probability of an event must be a number
between 0 and 1.

Thatis, 0 < P(E) <1
i)  If P(E) =0, event E cannot occur and E is called an impossible event.
ii) IfP(E)=1, event E is sure to occur and E is called a certain event. .

Example 1: A die is rolled. What is the probability that the dots on the top are
greater than 4?
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‘Solution: S= (1,2,3,4,56} = nl) = 6
The event E that the dots on the top are greater than4 = {5, 6}

2
=  nE) = 2 .. P(E) =%E%=g=%

Example 2: What is the probability that a slip of numbers divisible by 4 is picked
from the slips bearing numbers 1, 2, 3, ...., 10?

Solution: § =(1,2,3,...,10} = n(S) = 10
Let E be the event of picking slip with number divisible by 4.
E={4,8} = nE) = 2

nE) 2 1
BE)i=ssyi=i005

7.4.1 Probability that an Event does not Occur

If a sample space S is such that n(S) = N and out of the N equally likely events
an event E occurs R times, then, evidently, E does not occur N — R times.

The non-occurrence of the event E is denoted as E .

Now P(E):E('Q =R

n(S) N
I GEE U N
P(E) = 1-P@®.

AN S R

For the following experiments, find the probability in each case:
1. Experiment:

From a box containing orange-flavoured sweets, Bilal takes out one sweet
without looking.

Events Happening:

i)  the sweet is orange-flavoured ii) the sweet is lemon-flavoured.
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2. Experiment:

Pakistan and India play a cricket match. The result is:

Events Happening: 1) Pakistan wins ii) India does not lose.
3. Experiment:

There are 5 green and 3 red balls in a box, one ball is taken out.

Events Happening: 1) the ball is green ii) the ball is red.

4. Experiment:

A fair coin is tossed three times. It shows

Events Happening: 1)  One tail ii) atleast one head.
51 Experiment:

A die is rolled. The top shows

Events Happening: 1) 3or4dots i) dots less than 5.
6. Experiment:

From a box containing slips numbered 1, 2, 3, ...., 5 one slip is picked up
Events Happening:

i) the number on the slip is a prime humb!er

ii) the number on the siip is a multiple of 3.

7. Expeﬁinent:
Two dice, one red and the other blue, are rolled simultaneously. The numbers

of dots on the tops are added. The total of the two scores is:

v Events Happening: 1) 5 - i) 7 iii) 11



8. Experiment:
A bag contains 40 balls out of which 5 are green, 15 are black and the
remaining are yellow. A ball is taken out of the bag.
Events Happening: : .
i) The ball is black ii) The ball is green iii) The ball is not green.
9. Experiment:
One chit out of 30 containing the names of 30 students of a class of 18 boys
and 12 girls is taken out at random, for nomination as the monitor of the class.
Events Happening: .
i)  the monitor is a boy ii)  the monitor is a girl.
10.  Experiment:
A coin is tossed four times. The tops show
Events Happening:
1)  all heads i) 2 heads and 2 tails.

7.4.2 Estimating Probability and Tally Marks

We know that P(E) = ’;(% where E is the event and S is the sample space.

The fraction showing the probability is very often such that it is better to find its
approximate value. The following examples illustrate the necessity of approximation.
Example 1: The table given below shows the result of rolling a die 100 times. Find
the probability in which odd numbers occur.

Event Tally Marks Frequency
1 HH HH A HY 25
2 MBI Y
3 HHHIE 14
4 TR TR 24
5 B 8
6 1 HH 16

5 25+14+8 47
Solution: Required probability = 100 =100 = % (approx.)

Chapter 7: Permutation, Combination and Probability u _
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hqtve wnuen e probabmty = 2 (approx.) i
" 1
*The greater the nurnber of Inals, the m 1’e

) |

Example 2: The number of rainy days in Murree during the month of July for the
past ten years are: 20, 20, 22, 22, 23, 21, 24, 20, 22, 21

Estimate the probability of the rain falling on a particular day of July. Hence
find the number of days in which picnic programme can be made by a group of
students who wish to spend 20 days in Murree.

Solution: Let E be the event that rain falls on a particular day of a July.

P _20+20+22+22+23+21+24+20+22+21
DS 31 x 10

= %‘{% = (0.7 approximately.

Number of days of raining in 20 days of July = 20x 0.7 = 14
.. The number of days fit for picnic = 20-14 = 6

Exercise

T

K R e e L AR Ao L S

1. A fair coin is tossed 30 times, the result of which is tabulated below Study the
table and answer the questions given below the table:

Event Tally Marks Frequency
Head LAl 14
Tail HHHH B 16

1) How many times does ‘head’ appear?

ii) How many times does ‘tail’ appear?

iii) Estimate the probability of the appearance of head?
iv) Estimate the probability of the appearance of tail?

2. A die is tossed 100 times. The result is tabulated below. Study the table and
~answer the questions given below the table:




Event Tally Marks Frequency
1 HE HHE 1001 14
2 Hit 1 L 17
3 A 20
4 HE 1 0 18
5 Hit 15
6 1 16

i) How many times do 3 dots appear?

ii) How many times do 5 dots appear?

.v)  Find the probability of each one of the above cases.

How many times does an even number of dots appear?

How many times does a prime number of dots appear?

Chapter 7: Permutation, Combination and Probability

3. The eggs supplied by a poultry farm during a week broke during transit as
follows: 1 %, 2 %, l% %, %%, 1%, 2%, 1%

Find the probability of the eggs that broke in a day. Calculate the number of

eggs that will be broken in transiting the following number of eggs:
iii) 10,500

i) 7,000
7.4.3

ii) 8,400
Addition of Probabilities

We have learnt in chapter 1, that if A and B are two sets, then the shaded parts
in the following diagram represent A U B.

If A and B If A and B IfBc A
are disjoint are overlapping
A A A
é é B g

The above diagrams help us in understanding the formulas about the sum of

two probabilities.
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We know that:
P(E) is the probability of the occurrence of an event E.
If A and B are two events, then
P(A)
P(B)
P(A U B) = the probability of the occurrence of A U B;

the probability of the occurrence of event A;

the probability of the occurrence of event B;

P(A N B) = the probability of the occurrence of A N B.
The formulas for the addition of probabilities are:
i) P(AUB) = P(A)+ P(B), whenA and B are disjoim
ii) P(AUB) = P(A)+ P(B)—P(An B)

when A and B are overlapping or B C A.

Let us now learn the application of these formulas in solving problems
involving the addition of two probabilities.

Example 1: There are 20 chits marked 1, 2, 3, ...., 20 in a bag. Find the probability
of picking a chit, the number written on which is a multiple of 4 or a multiple of
i '

Solution: Here S = {1,2,3,...,20} = n(5)=20
Let A be the event of getting multiples of 4.
A = {4,8,12,16,20} =nA) =5

. o) oo |
~PA) =55 =73
. LetB be the event of getting multiples of 7
BIER—N {7 14} = n(B) = 2
2 1 '
B(B)=-76 = 10
As A and B are disjoint sets
| 4 deler 1
P(AUB) = P(A) + P(B) = 2+ 10=20

Example 2: A die is thrown. Find the probability that the dots on the top are nrime
numbers or odd numbers.

.
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Solution: Here S = {1,2,3,4,5,6} = n(S) =6

Let A = Setof prime numbers = {2,3,5} = n(4) =

" Let B = Setofoddnumbers = {1,3,5} = n(B) =
~ANB = {2,3,5}n{1,3,5} = (3,5} = n(AnB) =2

381 3 2. I

Now P(A) = 6= 9" P(B) = §=2° P(AnB)= =6 = g

Since A and B are overlapping sets.

PAUB) = PA)+PB)—-PANB)
1

=

1. If sample space = {1,2,3 9}, Event A {2 4 6 8} a.nd
Event B={1, 3,5}, find P(A v B). : : |

21 A box contains 10 red, 30 white and 20 black marbles. A marble is drawn at !
random. Find the probability that it is either red or white. '

3 A natural number is chosen out of the first fifty natural numbers. What is the
probability that the chosen numbers is a multiple of 3 or of 57

4. A card is drawn from a deck of 52 playing cards. What is ‘the probability that
it is a diamond card or an ace? :

5. A die is thrown twice. What is the probability that the sum of the number of
dots shown is 3 or 11?

6. Two dice are thrown. What is the probability that the sum of the number of
dots appearing on them is 4 or 6 7

7. Two dice are thrown mmultaneously If the event A is that the sum of the
number of dots shown is an odd number and the event B is that the number of
dots shown on at least one die is 3, find P(4 U B).

8. There are 10 girls and 20 boys in a class. Half of the boys ‘and half of the girls
have blue eyes. Find the probability that one student chosen as monitor is
either a girl or has blue eyes. '
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7.4.4 Multiplication of Probabilities

We can multiply probabilities of dependent as well as independent events.
But, in this section, we shall find the multiplication of independent events only.
Before learning the formula of the multiplication of the probabilities of independent

events, it is necessary to understand what is meant by independent events.

Two events A and B are said to be independent, if the occurrence of any
one of them does not influence the occurrence of the other event. In other word,
regardless of whether event A has or has not occurred, if the probability of the event B

remains the same, then A and B are independent events.

Suppose a bag contains 12 balls. If 4 balls are drawn from them twice in such
a way that:

i)  the balls of the first draw are not replaced before the second draw;
ii) the balls of the first draw are replaced before the second draw.

In the case gi), the second draw will be out of (12 — 4 = 8) balls which means
that the out-comes of the second draw will depend upon the events of the first draw
and the two events will not be independent. However, in case (ii), the number of balls
in the bag will be the same for the second draw as has been the case at the time of
first draw i.e. the first draw will not influence the probability of the event of second
draw. So the two events in this case will be independent.

Theorem: If A and B are two indepéndent events, the probability that both of
them occur is equal to the probability of the occurrence of A multiplied by the
probability of the gccurrence of B. Symbolically, it is denoted as:

P(A0B) = P(A). P(B)
Proof: Let event A belong to the sample space S, such that
MY = moad @) =m = PA) =2
Let_ event B belong to the sample space S, suc.h that

[




1

Chapter 7: Permutation, Combination and Probability

nS) = n and nB) =m = P(B)="2

A and B are independent events. .
Total number of combined outcomes of A and B =n 112

and total number of favourable outcomes = mm3

PANB) = 2o _ 4.—3~P(A) P(B)

ninz ni

Note- ’I‘hc above proof i
and B are the same

% PN
Where Al, Az, A3, S

Example 1 The probabilities that a man and his wife will be alive in the next 20

years are 0.8 and 0.75 respectively. Find the probability that both of them will be
|

alive in the next 20 years.

Solution: If P(A) is the probability that the man will be alive in 20 years and P(B) is
the probability that his wife will be alive in 20 years. '
The two events are independent: R . l
P(A) = 0.8, P(B) = 0.75
The probability that both man and wife will be 'a]iv_e in 20 years is given by:
P(ANB) = 0.8x0.75 = 0.6 f
Example 2: Two dice are thrown. E; is the event that the sum of their dots is an odd
number and E, is the event that 1 is the dot on the top of the first die. Show that

\P(Ey N\ E) = P(Eq) . P(E2)-

Sblutidn: El = {(1: 2)! (1, 4)- (I! 6)' (2’ 3)! (2: 5)'- (3, 4), (3, 6), (4, 3) (4, 5)

(5,6), 2, 1), (4, 1), (6, 1), 3, 2), (5, 2), (6, 3), (5, 4), (6, 5)}
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= n(E)= 18

EZ o — {(l! l)v(l! 2), (173)! (1!4)! (LS)! (l$ 6)}

= nE)= 6
n(S) = 6x6 = 36

18 1. 6 1
P(E)= 'ég = E and P(E») = _6 = g

E) and E; are independent

L
12

B =
=

P(E)) . P(E2) =

NOW.EI N E2 = {(1: 2)! (ls 4)! (lv 6)}

= nENnE) = 3

P(E! N E3)

il
w
N

The probability that a persori A will be alive 15 year hence is % and the

- probability that another person B will be alive 15 years hence is % Find the
probability that both will be alive 15 year hence.

A die is rolled twice: Event E; is the appearance of even number of dots and
event E; is the appearance of more than 4 dots. Prove that: '

P(Ey N E3) = P(Ey).P(Ey).

Determine the probability of getting 2 heads in two successive tosses of a
balanced com
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4. Two coins are tossed twice each. Find the probability that the head appears on
the first toss and the same faces appear in the two tosses. :

S. Two cards are drawn from a deck of 52 playing cards. If one card is drawn
and replaced before drawing the second card, find the probability that both the
cards are aces.

A

6. Two cards from a deck of 52 playing cards are drawn in such a way that the
card is replaced after the first draw. Find the probabilities in the following

cases:
i)  first card is king and the second is a queen.
ii)  both the cards are faced cards i.e. king, quc.cn, jack.
76 Two dice are thrown twice. What is the probability that sum of the dots shown in the

first throw is 7 and that of the second throw is 11?

8. Find the probability that the sum of dots appearing in two successive throws

of two dice is every time 7.

9. A fair die is thrown twice. Find the probability that a prime number of dots

appears in the first throw and the number of dots in the seqond throw is less
than 3. .

10. A bag contains 8 red, 5 white and 7 black balls. 3 balls are drawn from the
bag. What is the probability that the first ball is red, the second ball is white
and the third ball is black, when every time the ball is replaced?

8N (0 SI0) (T, Sy
HINT: (EJ(E@](E] is the probability. |

NN



Mﬁ’th‘enapcal Inductlon
and Binomial Theorem

8.1 Introduction

Francesco Mourolico (1494-1575) devised the method of induction and
applied this device first to prove that the sum of the first n odd positive integers
equals n’. He presented many properties of integers and proved some of these
properties using the method of mathematical induction.

We are aware of the fact that even one exception or case to a mathematical
formula is enough to prove it to be false. Such a case or exception which fails the
mathematical formula or statement is called a counter example.

The validity of a formula or statement depending on a variable belonging to a
certain set is established if it is true for each element of the set under consideration.

For example, we consider the statement S(n) =n* —n+41 is a prime number

for every natural number n. The values of the expression n> —n+41 for some first
natural numbers are given in the table as shown below:

n 1 2 3 4 5 6 7 3 9 10 | 11
S(n) 0 R34S W61 | 718 830 N7 113517131 | 151

From the table, it appears that the statement S(r) has enough chance of being

true. If we go on trying for the next natural numbers, we find n=41as a counter
example which fails the claim of the above statement. So we conclude that to derive a
general formula without proof from some special cases is not a wise step. This
example was discovered by Euler (1707-1783).

Now we consider another example and try to formulate the result. Our task is
to find the sum of the first n odd natural numbers. We write first few sums to see the
pattern of sums.

n (The number of terms) Sum
1 ' 1=1?
2 = 143= 4=27




3 ——-----143+5= 9=37
4 ' 143+5+7=16=4’
5 143+5+749=25=5>
6 143+5+7+9+11=36=6"

The sequence.of sums is (1),(2)%,(3)%,(4)?, ...

We see that each sum is the square of the number of terms in the sum. So the
following statement seems to be true.

For each natural number n,
143+5+. .. +#2n-1)=n* ....(0) (-~ nth term=1+(n-1)2)

But it is not possible to verify the statement (i) for each positive integer n,
because it involves infinitely many calculations which never end.

The method of mathematical induction is used to avoid such situations.
" Usually it is used to prove the statements or formulae relating to the set {1,2,3,...} but
in some cases, it is also used to prove the statements relating to the set {0, Jh2A3 S 2

8.2 Principle of Mathematical Induction
| The principle of mathematical induction is stated as follows:
If a proposition or statement S(n) for each positive integer » is such that
1) S(1) is true i.e., S(n) is true for n = 1 and
2) S(k + 1) is true whenever S(k) is true for any positive integer k, then
S(») is tue for all positiveintegers oy

Examplel: Use mathematical induction to prove that 3+6+9+...+3n=

svery positive integer n.
Solution: Let S(n) be the given statement, that is,

Chapter 8; Mathematical Induction and Binomial Theorem ui
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S0 560t apannt])

(@)

1% When n = 1, S(1) becomes

3(A+1)
N s

S(1):3= 3

Thus S(1) is true i.e., condition (1) is satisfied.
2 Let us assume that S(n) is true for any n = ke N , that is,

ooy ok(kH])

(A)
The statement for n=?c+l becomes ¢

3k+1)[(k+1)+1]
2

= 3(k+1D)(k+2)
2

Adding 3(k+1) on both the sides of (A) gives
3k(k +1)
AR

3+6+9+...+3k+3(k+1) =

(B)

3+64+9+ ...+ 3k+ 3 (k+1) = +3(k+1)

= 3(k+ 1)(E +1)
2
_ 3k+Dk+2)
& 2
Thus S(k + 1) is true if S(k) is true, so the condition (2) is satisfied.

Since both the conditions are satisfied, therefore, S(r) is true for each positive
integer n.

'Example 2: Use mathematical induction to prove that for any positi've integer n,

o n.(n+l)(2n+1)
e

Solution: Let S(r) be the given statement,

P02 1324 | 4y
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S(n): 1*+2'+3'+..+nf= "("H)ﬁ(an)
1. Ifn=1, S (1) becomes
S50 ()2 = 20D I D ey

6 6

Thus S(1) is true, i.e., condition (1) is satisfied.

23 Let us assume that S(k) is true for anyke N , that is,
12422 +32 4. +k2 =k(k+l)6(2k+l)- (A)
Stk+1): 12422432 4 k2L (kD= (k+l)(k+l’;l)(2k+l+,l)
k+D)(k+2)(2k+3
=( )( )( ) (B)
6
Adding (k+l)2 to both the sides of equation (A), we have
12 422 +32 4., + k2 +(k +1)? =k(k+l)‘f2k+l)+(k+1)3
_ (k+D[k(2k+1)+6(k +1)]
= : =
_(k+1)(2k2+k+6k+6)
6 : - |
_(k+D(2k* + Tk +6)
o ‘
_ (kD) (k+2)(2k +3)
= 6

T T

~ Thus the condition (2) is satisfied. 'Since both the conditions are satisfied, )
therefore, by mathematical induction, the given statement holds for all positive
integers. '

n'+2n

Example 3: Show that represents an integer Vne N.
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2D
Solution: Let S(n) = = +2n

1. When n = 1, S(1) becomes

S a2 (D3, =
3 3
2. Létus assume that S(n) isture forany n=k € W.thatis,

il )
Stk) = k +2k

represents an integer.

Now we want to show that S(k+1) is also an integer. For n=k+1, the statement
becomes

(k+1) +2(k +1):
3
k*+3k* +3k +1+2k+2 (K’ +2k)+(3k* +3k +3)
3 5 3
_ (K +2k)+3(k* +k+1)
3

S(k+1) =

Sl +2k+(k’+k+1)

k* + 2k

3

integeras ke W
Sk + 1) being sum of integers is an integer, thus the condition (2) is satisfied.
Since both the conditions are satisfied, therefore, we conclude by

n+2n

As i an integer by assumption and we know that (k*+k+1)is an

mathematical induction that represents an integer for all positive integral

~

values of n. ) ,
Example 4: Use mathematical induction to prove that

"+] 3 - -
M whenever n is non-negative integer.

Solution: Let S(n) be the given statement, that is, | The dot (.) between two
35" -1 Lnumbers stands for

4 multiplication symbol. |
S 3(5™ -1) _3(5-1
4

3+35+35%+... 435" =

S(n): 3+3.5+3.52+...+35" =

or 3 =3

1. For n=0, S(0) becomes S(0):3.5° =

Thus S(0) is true i.e., conditions (1) is satisfied. :
2. Let us assume that S(k) is true for any k € W/ that s,




T
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k+l
S(k):3+3.5+3.5% +....+3.5" =3—(5---£--ll (A)
Here S (k+1) becomes
(k+h+l
S(k+1):3+3.5+3.5% +...+3.5" +3.5" = M
== B
7 (B)
Adding 3.5 on both sides of (A), we get
k+1
3+3.5+3.5% +...+3.5 +3.5" = ¥+3.s“‘
RBGHSIE4.50
4
35 a+4)-1
_ 4
_ 3582 —)
& S

This shows that S(k + 1) is true when S(k) is true. Since both the conditions
are satisfied, therefore, by the principle of mathematical induction. S(n) in true for
eachne W.

Care should be taken while applying tlns method. Both the condmong (1) |

and (2) of the principle of mathematical induction are essential. The condition. (1) !

 gives us a starting point but the condition (2) enables us to proceed from one

. positive integer to the next. In the condition (2) we do not prove that Stk + 1) is

. true but prove only that if S(k) is true, then S(k + 1) is true. We can say that. any_—f'-_

- proposition or statement for which only one condition i 1s satlsﬁed, wxll not e
F for a]l n belongmg to the set of posmve mtege.rs .

" S 8 S YA -‘__. PR L f"-
For example we consnder thc statcmcnt that 3" is an even mteger for any
positive integer n. Let S(n) be the given statement.

Assume that S(k) is true, that is, 3° in an even integer for n=k. When 3*is
even, then 3*+3% + 3 is even which implies that 3* .3=3%*'s even.
This shows that S(k + 1) will be true when S(k) is true. But 3'is not an even

integer which reflects that the first condition does not hold. Thus our supposition is -~
talse ;
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" Note: - There is no integer n for which 3" is even.

Sometimes, we wish to prove formulae or statements which are true for all
integers n greater than or equal to some integer i, where i # 1. In such cases, S(1) is
replaced by S(i) and the condition (2) remains the same. To tackle such situations, we
use the principle of extended mathematical induction which is stated as below:

8.3 Principle of Extended Mathematical Induction
Let i be an integer. If a formula or statement S(n) for n = i is such that
1) S(i) 1s true and

2) S(k + 1) is true whenever S(k) is true for any integer n2i.
Then S(n) is true for all integers n>/.
Example 5:Show that 1+3+5+....+(2n + S) = (n+3)* for integral values of n2-2. .

- Solution:
1. Let S(n) be the given statement, then for n = -2, S(-2) becomes,

2(-2)+5=(-2+3), i.e., 1 = (1) which is true.
Thus S(-2) is true i.e., the condition (1) is satisfied
2: Let the equation be true for any n=ke Z, k 2 -2, so that
143+5+....+(2k +5) = (k +3)* y (A)
S(k¥1): 143+5+...+(2k+5)+Qk +1+5) = (k+1+3)> = (k +4)> - (B)
Add.ing (2@ +5) = (2k +7) on both sides of equation (A) we get,
1+3+5+ ...+ 2k+5)+Qk+7)=(k+3)*+2k+7)

=k? +6k +9+2k+'-?
=k>+8k+16
= (k +4)2

Thus the condition (2) is satisfied. As both the conditions afe satisfied, so we
conclude that the equation is true for all integers n>-2.

Example 6: Show that the inequality 4" > 3" +41s true, for integral values of n2>2.

Solution: Let S(n) represents the given statement i.e., S(n) 4" > 3" + 4 for integral
valuesof n=>2 : ;

[ Eorn_: 2, S(2) becomes
S(2): 4* >3? +4,i.e., 16 >13 which is true.
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Thus S(2) is true, i.e., the first condition is satisfied.
2. Let the statement be true for any n = k(2 2J€ Z , that is

4% >3k +4 @A)
Multiplying both sides of inequality ( A} hy 4, we get :

or 44" >4(3’R +4)

or 4 > B+1)3 +16

or ., 4% >3 14438112

or 44 > 3% 44 (=3* +12>0) (B)

The inequality (B), satisfies the condition (2).

Since both the conditions are satisfied, therefore, by the pnnmple of extended
mathematical induction, the given inequality is true for all integers n22.

Exerclse 81

Use mathcmatlcal induction to prove the followmg formulac for every
positive integer 7.

1. 145+9+ .. +(4n-3)=n2n-1)
2. 1+3+5+..+(2n—-1)=n?

n(3n-1)

3. 1+44+7+ ...+(3n-2)= >

4. I+ 2 d i —0k ]

S 1+i+-—l——+....+ ll =2[1— L ]
2.4 2% %
6. 2+4+6+...+2n=n(n+1)

7 246+ 18 +...+ 2x3" 1 =3" -]

8. 1x3+2X5+3%X7 +... +nx(2n+1)_”("+1)6(4"+5)
9. 1x2+2x3+3x4+;...+nx(n+1)="("H)B("“*z)

n(n+1) (43;1— 1) .

10. 1X2+3%x4+5%X6+...+(2n—-1)xX2n= 3

e —————— ey

————
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1 1 1 1 1

11. + + +ot =1-

IGO0 3 35 4 nn+1) n+l1
12. - -+ l - l +.t 1 — it

1x3 .3><5 5x7 2n-1) 2n+1) 2n+1
13. L + i + | + .t l = i

2x5 5x8 8xll1 Bn-1)Bn+2) 2(3n+2)
14. r+r2+r3+....+r"=r(i_r ), (r#1)

—r

15. a+(a+d)+(a+2d)+....+[a+(n—1)d]="—2‘[2a+(n—1)d]

16. L s2l2433 4. 40 ln=lnel -1

17. a,=a,+(n-1)d when, a,, a, +d, a, + 2d, ... form an A.P.
18. a,=ar" when a,,a,r,a,r*, ... formaG.P.

n(4n® —1)
3

n (3M{E M)

21.  Prove by mathematical induction that for all positive integral values of

19. PP+3*+5+..+@2n-1)%=

i)  nP’+nisdivisibleby2. i) 5" —2" is divisible by 3.
ii) 5" —1 is divisible by 4. iv) 8x10" — 2 is divisible by 6.
v)  n’—n isdivisible by 6.
1N ] 1
22., —FA—t..t—=—"|1-—|
32 3n 9 [ 3" }

-1
P3NNAE 2T 322 () nl = 1y ‘2"("“)

4. 1’+3°+5+..+(@2n-1) =n?[2n*-1]

25. x+1isafactorof x*" —1;(x#—1)
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26.

27.
28.

29,

30.

31,

32.
33,
34,
3s.
36.
37.

38.

8.3

x —yis a factor of x" —y"; (x # y)

2n-1 ?.n 1

(x#-y)

Use mathematical induction to show that

x + yis a factor of x

1+2+2% +...+2" =2"" —1 for all non-negative integers .

If A and B are square matrices and AB = BA, then show by mathcmatical
induction that AB" = B"A for any positive integer n.

Prove by the Principle of mathematical induction that n* —1 is divisible by 8
when 7 is an odd positive integer.

Use the principle of mathematical induction to prove that Inx" =nlnx for
any integer n =0 if x is a positive number.

Use the principle of extended mathematical induction to prove that:
n!> 2" —1 for integral values of n = 4.

n® >n+3 for integral values of n>3.

4" >3" +2"" for integral values of n>2.

3" <n! for integral values of n>6.

n!>n? for integral values of n > 4.

3+5+7+...+(2n+5)=(n + 2)(n+4) for integral values of n=>—1.

l+nax<(+x)"forn=2and x> -1

Binomial Theorem

An algebraic expression consisting of two terms such as a + x, x—2y,ax+b

etc., is called a binomial or a binomial expression.

We know by actual multiplication that
(a+x)* =a’+2ax+x* (@)
(a+x)° =a’ +3a’x+3ax” +x (1)

The right sides of (1) and (ii) are called binomial expansions of the binomial

_a + x for the indices 2 and 3 respectively.



A Textbook of Algebra and Trigonometry.

In general, the rule or formula for expansion of a binomial raised to any
positive integral power n is called the binomial theorem for positive integral index n.
For any positive integer n,

(@a+x)" = [3}3" +(‘i' }n"“.\'_+(g}v"‘l;r3 el [r’l 1}'"“"‘”;1""
+ ax En + X (A)
\r n-—1 n

or briefly

(a+x)" =3 (:f]a""x’

where a and x are real numbers.

The rule of expansion given above is called the bmormal theorem and it also
holds if a or x is complex.

Now we prove the Binomial theorem for any positive integer n, using the
principle of mathematical induction.

" Proof: Let S(n) be the statement given above as (A).
1. If n = 1, we obtain

S(1): (a+x)' =(}]}11 +(i )ﬂl"x=a+x which is true

Thus condition (1) is satisfied.

2: Let us assume that the statement is true for any n = ke N, then

s k k k k-1 k -2 z k k=(r-1) _r-1 k k;r r

(a+x) _(O]a +(1]a x+[2}1 +.. +[r—l}' X +(r}: X
: k k-1 k k :

+.t e B i . (B)

k+1 '
S(k+1):(a+k)“l=( 7 ]a +(k;"1)a ><x+[k;1]a*“l><x2+.... +

QRN (KLY o, k+1 k+1 '
(r—l}’ xXx + 5 Xx" ...+ % XX +k+1 (©)

Multiplying both sides of equation (B) by (a+x), we have
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' . k k k k
2 + 0% =(a+ ko k=l k=202 k-r+l r-1
(a+x)(a x? (a x)[[o}i (1 }1 [2}1 X flucy x
( k k |
+ Al X F ot =y k
kr k-1 k
: o k .f“] + k kx + k sz i i k l—r+2xr—l
1|0 1 2 r—1

k) k) k1,2 K\ k-2 k k-r+l r
+[[0}1 x+(1}1. X -I-.2 Xx* +...+ 2 Xx

+["}. e (i e o ()
R E0

e

k k 1
Jand[ ]-&-[ ]=[k+ ]forlSrSk
r r—1 r
k+1 k+1 k+ ; Y
(a+x)“’=[ i ]a**‘+( : }1"x+[ 21}1*“x'+...
k+1
,{ : }*-..+.x,+"__+[k;1)ﬂ o +(ﬁi}}m‘ O

We find that if the statement is true of n =k, then it is also true for n =k +1.
_ Hence we conclude that the statement is true for all positive integral values of n.
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As all the terms of the expansion can be got from it by puttmgr 0 1 2
so we call it as the general term of the expansion.

6
Example 1: Expand (-;i - 3) and also find its general term.
a

64
i S e
. _2(a’) -

z] RS 15 2 60 96 64
- = e Al
T.,;, the general term is given by
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T,+,;(f](§)6_r [‘QZJ (6) 2= iy 1y 2 ¥ "
=(_nf[f);§ii;gii=(-n*.[f)%ﬂ—”’(f)@‘] "

Example 2: Evaluate (9.9)°

Solution: (9.9)° = (10-.1)°
= (10)° +5%(10)* X (—=.1) +10(10)* X (—.1)* +10(10)* X (—.1)*-
+510)(—.D* +(=.1)° '
= 100000 — (.5) (10000) + (10000)(.01) +1000(-.001) + 50(.0001)—.00001

= 100000 - 5000 +100—1+.005 —.00001
= 100100.005 —5001.00001

= 95099.00499
3 1 11
Example 3: Find the specified term in the expansion of (Tx - 3—] :
X
i) the term involving x’ ii) the fifth term

iii) the sixth term from the end. iv)  coefficient of term involving x™'
Solutior:

11
i) Let T., be the term involving x°in the expansion of [%x—%} , then
0k =53

ll 3 11-r 1 r ll 3“ r
Tou=tl e i = ll -r 1)".37"x -r
L) () (e
- ll 3[1—2r O
= (—1) {r }F.x“ 2
As this term involves x°, so the exponent of x is 5, that is,
11-2r =5

or —2r=5- ll=:»r 3
Thus T involves x°



_ 11316 11.109 3°
: A < 11-6 = PSR 2
iy = (=1 {S]F"‘ St l: 391Nt 5
__l65x243 _ 40095 s
Sl e BEEO56

1) Putting r=4in T, , we get T,
- L1E\i3ils 11.109.8 3°
T = __1 4 S 11-8 — —*'—.—..1‘3
= )[4}2“** 4321 2
11xX10%3 27 3 165%27 4
— . X = X
1 128 64

4455 4
=—X
64
ii1) The 6th term from the end term will have (11 + 1) -6 i.e.. 6 terms before it,
It will be (6 + 1) th term i.e.. the 7th term of the expansion.

QLLLZ RN 18] 1 019!R 7 3 i
1112 X |

Thus T, = (-1)¢ ] LS
25H )(ﬁJz”*“ 54321 2°

ERLIX6OXT I T
1 3x32 x 16x

iv) % is the coefficient of the term involving x™' .

8.3.1 The Middle Term in the Expansion of (a + x)"

In the expansion of (a + x)", the total number of terms is n + 1
Casel: (nis even) :

If n is even then n+1 is odd, so [%H)th term will be the only one middle

term in the expansion.
Case II: (n is odd)

If n is odd then n + 1 is even so[nTH]th and [n+3

]th terms of the

expansion will be the two middle terms.

2

12
Example 4: Find the following in the expansion of [—;— + _2_] L
X

] i) the term independent of x. i) the middle term
Solution: i)  Let 7,,, be the term independent of x in the expansion of

12
(—';—+—-2-5—] , then
X :

| |
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12y (2 2
Tr+|=(r [7] [?"J ( )212— 20
o lr2 D2r-12 4 12-3r

As the term is independent of x, so exponent of x, will be zero.
That is, 12-3r=0=>r=4

: 12 .
Therefore the required term T_ = pha

X 12x11x10x9 D=4 40

4x3%x2x1
_ 11x45 _ 495
Ll 16

ii) In this case, n = 12 which is even, so

[% +1 Jth term is the middle term in the expansion,

iles.o “Tisithe requued term.

we{el3) )

6
[12 08 l2><11x10x9><8><7 512
-, :

6 126 %% © 6x5x4x3x2xl

1 x11><7 924

6
X

8.3.2 Some Deductlons from the blnomlal expansion of (a + x)
We know that

(a+x)n n an i n an—l + n an-zxz e
= X v
0 1 2

AR
1 T e P P ax" + x 4))
r n—1 n
(1) If we put a = I, in (I), then we have; |
(1+x)"=(SJ+(f)x+[g)x2+.“.+("}x+ +(n I}n-.+(_ﬁ}n o
=1+nx+f("2_l“n.xz+m_+n(n—l)(n 2)' = DI
! )
{L.(”): nt _n@a=D.(a-r+)@n=-r! n@n-D..(a=r+l)
.’.‘-:'J" r!(n-—-r)! r!(n_r)! = |

(]
e |

[ ——
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ii) Putting a = 1 and replacing x by —x, in (I), we get.

U=2k =(8 ]+(?](“x)+[ 4 )(-Jr)_2 +('3' ](—x)3 +....+(n’il](—x)""‘ +(2 J(—x)"
=[3 )—(?)x-‘-(g ]xz —[g ]x3 +....+(_1)ﬂ—l[nfil}xn—l +(_1)n[: ]xn ....(1ID)

ili) We can find the sum of the binomial coefficients by putting @ = 1 and
x=11n (I).

ie, (+ =(g H;‘ Hg ]+~--+[n'11]+[’5]
or 2 =(8 J+(1 Jo( Jo (a1 )+()

[{@hus the sum of coefficients in the binomial expansion equals to 2".

iv)  Putting @ = 1 and x = -1, in (I), we have

R (o)
e (B (5o (o)

If n is odd positive integer, then

(8e(8)reme ()= Jo(8 )o-+()

If n is even positive integer, then

(5)r (1 (3 )(m)

expansion equals to the sum of its even

Example 5: Show that: (f ]+z[g J+3['3’ J+....+n(;: J: n2"

Solution:

[n ]_”{n ]-l;l(n ]+....+n[ & J=n+2n(n_l) +3n(n_1)("_2) +..+n.l
1 2 i3 &0 2 3]

S 1:|
2! g

=n|l+(n-1D+

% | ="{(:6 e e (371)]
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L e s = =
Fe 'xer(:lseS R T
Usmg bmormal theorcm, expand the followmg
6 4
2
i) (a+2b)° 11) [7 ——2] iii) ]

[3&' 2
x
v 8
iv) {2a—x—J : V) [i—&] v1) [J 1’ J
a 2V
Calculate the following by means of binomial theorem:

) 097)° i) (2.02)° i) (9.98)' iv) | (1)

Expand and simplify the following:

) (@+v2xf +l=2x) i) @+VB) +-B) .
iy Q2+i)f -(2-if iv) (.w«/,r?——_l'y+(x—«./_x3—1)1

Expand the following in ascending power of x:
) @+x—x)* i) A-x+x®)* i) A-x—x?)*

Expand the following in descending powers of x:

3
i) (x*+x-1)’° i) (x—1-lJ
- x
Find the term involving:
13
i) x*in the expansion of (3—2x)’ ii) x*in the expansion of (x—%]
4 x|

1

9
iii) a* in the expansion of (i = a) iv) y*in the expansion of (x = J; )
: X :

Find thé coefficient of;

10 2n
i) x’in the expansion of (x’z —21] ii) x" in the expansion of [x’ —L]
. - X X v

) 10
Find 6th term in the expansion of (xz = 211
; - 20555
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9. Find the term independent of x in the following expansions.

2 10 1 10 1 4
1) (.\'——} ii) (JI+ : ] ii1) (1+x2)3[l+—2)
e 2.x= 2X

10.  Determine the middle term in the following expansions:

2 \12 1 ' ’ 2m+l
(= L2 (e i) [2x———
Sol § ) 2 3 2x

3n
11. Find (2n +1) th term from the end in the expansion of (x - L} :

2x

1.3.5...2n-1)

n!

13.  Show that: (f ]+[5’ ]+(§ ]+....+[n”_l)=2""
n+l
AN (el gL fny, Mmool (n) 27 1
0 2\ 1 3825 REd\e3 n+l{ n n+l
8.4 The Binomial Theorem when the index n is a

negative integer or a fraction.

When 7 is a negative integer or a fraction, then

12.  Show that the middle term of (I1+ x)*"is X",

ne=l) X+ nl=l) (n=2) X+
: a5 3|
+n(n—1)(n—2‘)...(n—r+l) S

T=

(I+x)" =1+nx+

provided | xI<1.

The series of the type

1+nx+"("'_1) i 2slBo2)

3!

is called the binomial series.
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Note (1): The proof of this theorem is beyond the scope of this book.

1
integer or a fraction.

(2) Symbols {g)[n ](;)ém are meaningléss" wh'_.e'nl nis a negative

' = r+1
f3) The geneldl term in the expansmn is T,y = A _l) (n. b il Y X

(b
Example 1: Find the general term in the expansion of (1 +x)7° when| x| <i1%

(=3) (4 (5)..(3=r+1) ,

Solution: 7,,, = '
r.

L (-D)".345..(r+2) S

r! ='

r+ 2)
1.2.:‘! |

= (=D".

! L, rlr+D) (r+2) , ;
e ST s amn o

= (_t)'.w.r’ |

Some particular cases of the expansmn of (1 +x)", n<o. | |

1) (I+x)™ =l-x+x2—x +....+(—1)'x o e
ii) A+ x) 72 =1-2x+3x> =4 +...+ (=D (Pt Dx" +...

i) 1+ =1=-3x+6x2 =10x> +....+(=1)’ o 1)2("+ 2 X"+
vy -0 =1+t XSRS -i-x'.‘ i '
) (EO% =1+ 20+ 3¢+ +4x 4., +(,.+l)x,

.vi) _ (l x)3-1+3x+6x +10x + +£f+_llgﬂ s

i 4% $
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8.5 Application of the Binomial Theorem

Approximations: We have seen in the particular cases of the expansion of (I+ x)"

that the power of x goes on increasing in each expansion. Since | X | < 1, so
| X |r <| X | forr=2,3,4,...

This fact shows that terms in each expansion go on decreasing numerically if
|x} <1. Thus some initial terms of the binomial series are enough for determining the

approximate values of bmomlal expansions having indices as negative integers or
fractions.

Summation of infinite series: The binomial series are conveniently used for
summation of infinite series. The series (whose sum is required) is compared with

n(n—1) e n(ﬂ —1) (n—-2) St
21 i 3!

1+ nx+

tc‘; find out the values of n and x. Then the sum is calculated by putting the values of n
and xin (1+x)".

Example 2: Expand (1—2x)"*to four terms and apply it to evaluate (.8)"°correct to
three places of decimal.

Solution: This expansion is valid only if [2x| <1 or 2[x|<1 orlx < % ,that is

R
(1—2x)“3=1+%<—2x)+3——3——'—(—2x)2 SRS S

2! AT
)

2 3 3 3 3 3
=]1-—x+ 4x%)+ —8x%) -

R oy BN
B e Leo 1 gy

3 91 31313832, 1
=1——%—x—ix2 -————40 x’ -

3 9_ 81

Putting x =.1 in the above expansion we have
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= 3 _ _Z _i 2_59 G
(1=2cD)E=1 3(.1) 9(.1) 81(.1)
=] — =i e ("40%.001 =.04)

~1— 06666 — 00444 — 00049 = 1—.07159 = 92841
Thus (.8)"’=.928

. Alternative method:

) ) )
3 _ 73 oD RN 3 Liav2n SIIES 3
(.8) _(1—,2)‘3..1—-3-+ (-.2) =

Simplify onward by yourself.

Example 3: Expand (8 —5x)*"*to four terms.

2} 2 : 2
: Ny 2 T 1 ’ —=
Solution: (8 —5x)~*"° =(8(1—%)J : = 8_5(1.-_2.;;} -_—(33)—2[1_§xJ 2
=l[l-—5—x\ﬂ§
4 8 )
3]
]
=—|l+|—-——||=——x |+ ——x | +
4 3 8 2!
=EE '
v | S s 3
3 3 3 [——S—-x)+
3!

=—1—|:l+—x+'-—x
4

5 S 925 s d0 DS SIS
= SR .
12 9 64 81 8x64
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125 SRUNI625s. .
+ Ty o

L+i.t-i- X X
4 48 2304 20736

=2]/3

The expansion of [l —-g—.t} is valid when <l

— _\"

5 | 8
or —| x |<I=| x |<=
8 5
Example 4: Evaluate 3/30 correct to three places of decimal.

1
Solution: -‘Jﬁ: 30)"? =27+ 3)3

3 1/3 l 173
=[27[1+-—J] =(27)”-‘(1+—]
: 27 9
1/3
= 3[14“1—]
9

#) 3 2
=13 1+l.l-—l- L '+i-l +... |=:3 1+i— L RE
32082019 81\ 9 27 \ 27

= 3 [1 +.03704 — .001372] = 3 [1.035668] = 3.107004

Thus 3/30 = 3.107

1—x

Example 5: Find the coefficient of x"in the expansion of

d+

l—x

(1+x)?

Solution: =(1-x)(1+x)?

x)?

w(=2-r+l) o

= (=2) (=3)..

= (x+)[ 14 (=2xs T2 2

2!

r!
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= (=x+ D[ 14+ (=D2x+ (=1)?3x> + .+ (=) X (r +D)x" +... ]
= (=x+ D[ 1+ (=D)2x+ (=1)23x2 + ...+ ()" nx™! + (=D"(n +Dx" +... ]
Coefficient of x" = (=1) (<1)""'n+(=1)"(n+1)
=(=D"n+D"(n+1)
= (-1)"[n+(n+1)]
= (-1)".@2n+1)

Example 6: If x is so small that its cube and higher power can be neglected, show

that l-_—x-zl—x_pixz
1+x
~ Solution: . Sk =(1-x)"2 1+ x)7"2
1+x
IR ETE
== (=X) 21182 () +. |1+ —— k+ Fa

= 1——I~x——!—x3+... l—ix+ix?+...']
2 : 8 : 2 8
8
=1'= l+l + E.;..l._l 24
2. ol 8 4 8

=1—x+lx-2
2

: R
Example 7:If m and n are nearly equal, show that UCRAAN T W W
3n m+2n  3n

Solution: Put m = n + h (here h is so small that its square and higher pow

ers can be
neglected) .

s, of3m=2n)" _(S@tm)=2n)" _(3n+5pY"
T 3n 3n 3n
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]
Y orr——

it

-+
uim
o=
N
>

Sh ! I ' ;
= 1] 9—; (neglecting square and higher powers of #) (i)
1
RHS. = m o n+m
m+2n 3n

_n+h 3 2n+h
3n+h 3n

(n+h)| 1 2 h
= | = s e
3n 1+—35:—t 3 3n
*(n+h)—[1+£} [i+i]
3n 3n 3 3n
— —l- —_ 1__
('3 3n ]( . 3n } { )

h 3 . _ 5
= 1+ g—.(neglecung square and higher powers of /) : (ii)
n

From (i) and (ii), we have the result.

) Example 8: Identify the series: 1+ % 4 Sl L0 +.... as a binomial expansion

3.6 3.69
and find its sum

Solution: Let the given series be identical with.
n(n—1) o nn—=1) (n—2) o
! 3!
We know that (A) is expansion of (1+x)"for | xI< 1 and nis nota positive
=. integer. Now comparing the given series with (A) we get:
1

= Bl (i)

1+ nx+

- (A)



Chapter 8: Mathematical Induction and Binomial Theorem

n(n—1) e 12 (i)
2 3.6
From () (iii)
3n

i, o | el v,
Now substitution of x = 3-— in (ii) gives
n

n(n—l) _'l Orn(n-l) 1 1
3n

2! 6 219, 316
1
or n-1=3n = n=——
_ 2
Putting n = T in (iii), we get
1
Jl T e c—

e =172 -1/2
Thus the given series is the expansion of [1 +(—%H - or (1-%]

-1/2 Ll
Hence the sum of the given series = (I —%] = [%] ©=(3)/

=3
Example 9: For y =%[-4—}+ L

4 Y 135(4Y
— | + — | +
9 2210 9 2331 9
show that Sy* +10y—4=0 ' )
. 2 3
1( 4 1.3( 4 1.3.5 ' '
Solution: y=—| — [+— + e
T 2[9}42![9] 83'[9] o e
Adding 1 to both sides of (A), we obtain

WL L
2 2|79 |Ta21l79 | 831 (B)

Let the series on the right side of (B) be identical with
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PR n(n-1) S nn—=1)(n- 2)_.r3 P,
2! 3!

which is the expansion of (1+ x)"for| x | <1and n is not a positive integer.

On comparing terms of both the series, we get

1 4 : :
nx —?{?) _(1)_

an=1) ,_ 13 [i]" (i)
2! 421\ 9
From (i), x = i (iii)
; 9n

Substituting x = giin (11), we get
n

na=D(2Y_3 16 na-h) 4 _3 16
2 9n 8 8l 2 8ln* 8 81
or 2(n41)=6n_ or n—1:3n=>n=—%

Putting n = ——;— in (iii), we get

2 4
xX= =——9—
2
4 -1/2 5 -1/2 9 1/2
Thitig - jlan o e (S T S
R ( 9} [9] 5
-
J5

or . 5(1+y)=3 e @iv)
= - Squaring both the sides of (iv), we get
51+2y+y%)=9
| or Sy +10y—-4=0




. ~ Exercise 8.3 P o
Expand the followmg upto 4 terms, takmg the values of X such that the 3
expansion in each case is valid.

i) a=-x)Y3 i)l B2 i) (1+x””3 iv) (4-3x)"2
V) 8 —2x)5. vi) (2-3x)7 vil) =) viii) 12
| (1+ x)? 1-x
142 1
) A x) (+x—2x*2  xi) (l—2x+3x2)%

2=
Using Binomial theorem find the value of the following to three places of

decimals.
1

i) 99 i)  (98)? (i)  .03)3 iv) 365
v 417 i vil) _;E ) 5\/2_15_2
ix) % X) (.998) 3 Xi) *{[413_6 Xii) (1280)?1'

Find the coefficient of x" in the expansion of

i 1+ x® i) 1+ x)j ) 1+ x):
(1+x)? (1-x)° (1-x)"

: (1 = 2 3 2

iv) (:33 V) (lI=x+xf—x" +..)

If x is so small that its square and higher powers can be neglected, then show

that
) 'l'x zl—%x ii) ”11+2x z1+%x
—X =X
i T EE 6 IR
4+5x 4 284
1) V4 +x N 25
(1-x)° 4
(l+x)”2(4—-3x)3’2 SJC
2 Grs o N6
) (1-x)"2(9—4x)"? ..i_él
) (8+30) 2 48"
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10.

AL

12,

13.

Vil =
) ES=x)!" 12

- If x is so small that its cube and higher power can be neglected, then show that

i) -\Il—x—2x2ﬁl——:lzﬂ.\'—%x2 i) \/Ezl+x+%x2

l—x

If x is very nearly equal 1, then prove that px” —gx? = (p — g)x"*

If p — g is small when compared with p or g, show that

@n+Dp+Q@n-1g (p+q)"
@n-Dp+2n+l)g 2q

142
} = e and V. are nearly equal.

Show that
n—N 4n

n
2(n+N)

Identify the following series as binomial expansion and find the sum in each
case. '

2 3
. IR R 1350 1
i) | = [l o e e
: 2| 4 | 24| 4 3B | 4
2 3
1 135( 1
— | == —| +
2T A )

4 4
! 5 2 3
et (g3 (U 3.5 (1 ia
o3 3

24.6

Use binomial theorem to show that 1+L + E +£ +..= ﬁ
; 4 48 48.12

1 13(1% 1.3.51
iy= 2! ('3-]2"‘ 31 EJ]+----,thcnprovcthaty2+2y_.2=o

o2, 13 (2} 1352 :
25t o5 3|5 +...., then prove that y* + 2y — 4 = 0-
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9.1 Introduction

Trigonometry is an important branch of Mathematics. The word
Trigonometry has been derived from three Greek words: Trei (three), Goni (angles)
and Metron (measurement). Literally it means measurement of triangle.

For study of calculus it is essential to have a sound knowledge of
trigonometry.

It is extensively used in Business, Engineering, Surveying, Navigation,
Astronomy, Physical and Social Sciences.

9.2 Units of Measures of Angles
Concept of an Angle

Two rays with a common starting point form an angle. One of the rays of
angle is called initial side and the other as terminal side. The angle is identified by
showing the direction of rotation from the initial side to the terminal side.

An angle is said to be positive/negative if the rotation is anti-clockwise/
clockwise. Angles are usually denoted by Greek letters such as & (alpha), B (beta),
¥ (gamma), 6 (theta) etc.

In figure 9.1 ZAOB is positive and ZCOD is negative.

B Terminal side 0 - _ (€ . Initial side
Antl—(;:g:kwme ) », | Glockuice
o e | | rotation
.0 > Initial side : S
. 4 D*Terminal side
‘ ~ figure 9.1

There are two commonly used measurements for angles: Degrees and Radians,
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which are explained as below:
9.2.1. Sexagesimal System: (Degree, Minute and Second).

. T
If the initial ray OA rotates in anti-clockwise direction in such a way that it

coincides with itself, the angle then formed is said to be of 360 degrees (360°).

One rotation (anti-clockwise) = 360°

—; rotation (anti-clockwise) = 180° is called a straight angle

= rotation (anti-clockwise) = 90° is called a right angle.

Terminal side

360° 180° 90
O Terminal side TN
0 —— > X < 0 » X 0 —
Initial side A Terminal side Initial Side Initial Side A
. o 1 : o 1 . 0
1 rotation =360 5 rotation = 180 3 rotation = 90

1 degree (1°) is divided into 60 minutes (60") and 1 minute (1°) is divided into 60
seconds (60”). As this system of measurement of angle owes its origin to the English
and because 90, 60 are multiples of 6 and 10, so it is known as English system or

Sexagesimal system

Thus 1 rotation (anti-clockwise) = 36()%
One degree (1°) = 60’
One minute (1°) = 60"

9.2.2, Conversion from D°Ms” to a decimal form and vice versa.

Q) 16°30° = 16,5 (As30'=% ~0.5%)
: ) 0 0.
(i), 45250 = 45157 (025°=2 -1 _80 5
: . 100 4 4
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Example 1: Convert 18° 6" 21" to decimal form.

Solution: 1'= = and 1" = s )ilf sl
60 60 60x60
1 1 0
- 18°6' 21"=[18+6] — [+21
60 60x60

=(18+0.1+0.005833)° =18.105833°

Example 2 : Convert 21.256 to the D°MS” form

Solution:  0.256° = (0.256)(1)
= (0.256)(60") = 15.36"
and 036 =(0:36)1)

= (0.36)(60") 21.6”

Therefore,
21.256'=21° + 0.256°
=21" + 1536’
=21°+ 15+ 036"
o -
=21 + 15" +21.6”
= 21°15" -22'§" rounded off to nearest second
9.2.3. Circular System (Radians)
There is another system of angular measurement, called the Circular System.
It is most useful for the study of higher mathematics. Specially in Calculus, angles
are measured in radians.

Definition: Rédian is the measure of the angle subtended at the center of the circle

by an arc, whose length is equal to the radius of the circle.
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Consider a circle of radius r. Construct an
angle ZAOB at the centre of the circle whose rays

cut off an arc @ on the circle whose length is
equal to the radius r. .

Thus mZAOB = 1 radian.

9.3 Relation between the length of an arc of a circle and
the circular measure of its central angle.

l
Prove that 8 = —,
E

where r is the radius of the circle /, is the length of the arc and 6 is the
circular measure of the central angle. i ‘

Proof:
B : . B 2r 34\\0.’
r Xﬁr r-\
AlRadian N B
1R A m N 3

By definition of radian;
An angle of 1 radian subtends an arc AB on the circle of length = L.r
An angle of -;— radian subtends an arc AB on the circle of length = % T
An angle of 2 radians subtends an arc AB on the circle of length = 2ir

; —~
~~An angle of 6 radian subtends an arc AB on the circle of length = 6.r

oy ?
= AB=0.r

SN =0.r
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Let there be a circle with centre O and radius r. Su dupose that length of arc
AB =l and the central angle mZAOB= 6 radian. Take an arc ACof length = r.

Alternate Proof

By definition mZAOC=1 radian.

We know from elementary geometry that measures of central angles of the
arcs of a circle are proportional to the lengths of their arcs.

mZAOB m@
mZAOC ~— mAcC

0 radian |
—hle

lradian r

= 6‘=i
%

Thus the central angle € (in radian) subtended by a circular arc of length [ is
given by 6 = L , Where r is the radius of the circle.
=

Remember that r and [ are measured in terms of the same unit and the radian
measure is unit-less, i.e., it is a real number.

For example, if r=3 cmand [ = 6 cm

then Gzi = -§=2
3

r

9.3.1 Conversion of Radian into Degree and Vice Versa
We know that circumference of a circle of radius r is 27r=(l), and angle

formed by one complete revolution is 6 radian, therefore,
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Thus we have the relationship
27 radian = 360

Circumference 3 xr

= 7t radian = 180° O Radian
(4] (] X O r
= 1 radian = £0 = 150 = 57.296°
t . 3.1416
o T 5
Further 1 = —— radian
180
3.1416

= 0.0175 radian
180
Example 3: Convert the following angles in degree:

1) —zg—r- radians (ii) 3 radians.

Solution: (i) —235 radians=%(1r radian) =-— (180°) =1203

(ii) 3radians = 3 (1 radian) = 3 (57 296°) = 171.888°
Example 4: Convert 54° 45’ into radians.

Solution: 54°45' = [54 %} [542} _219

4 4
219
—=——{]a
)
=2l =-2(0.0175) radians
= (0.958 radians.
Most calculators automatically would convert degrees into radians and radians

into degrees.

Example 5: An arc subtends an angle of 70° at the center of a circle and its length is
132 m.m. Find the radius of the circle. '

3.1416 | 11
Solution: '?0 "70wa3‘“5‘180(3 1416)rad1an--"*rad1ans (n=3. 1416)

=)

il e
6 = 9 radian and = 132 m.m.
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l

! 1 9
0 = = =% r = = 132x11=108m.m._

Example 6: Find the length of the equatorial arc subtending an angle of 1° at the
centre of the earth, taking the radius of the earth as 6400 km.

b4 3.14
Solution: 1° = m radian = 1836 radian
3.1416 \
0 = 180 and r = 6400 km.
Now 6 = 4
=

31416
) 6400X__—1800000 = 111.7 km.

Example 7: Find correct to the nearest centimeter, the distance at which a coin of
diameter '’ cm should be held so as to conceal the full moon whose diameter
subtends an angle of 31 at the eye of the observer on the earth.

A
p
0 *‘Mﬂ D
Observer S - Moon
' C

Solution: Let O be the eye of the observer. ABCD be the moon and POSR be the
coin, so that APO and CSO are straight line segments.

We know that mPS =1 cm, mZAOC =31’
Now since mZAOC (= mZPOS) is very very small.

PS can be taken as the arc of the circle with centre O and radius OP.
31 X7

N = = X = S e 1
ow * “OP'="r" "1 '=1"cm"* 6°=131 =50 x 180 radians
el |
- r /
. _ L _ 1x60x180 _60x180 " |
=% = alxm =~ 31%91416 0:89cm,
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I

Thus we have the relationship
27 radian = 360

0

Circumference 2 zr

= mradian = 180 9Roadfan
Q (1] r
N a5 L 180" o060
T 3.1416
Further 1° = idel radian
180
= 316 ~ (0.0175 radian
180

Example 3: Convert the following angles in degree:

(1) —2—;-— radians (i1) 3 radians.

Solution: (i) %radians:%(nradian) =%(130°) = 120°

(i) 3 radians = 3 (1 radian) ~ 3 (57.296°) ~ 171.888°

Example 4: Convert 54° 45° into radians.

Solution: 54°45’ - (54%] [543] 219

Al
219

= —10
)

2 219(00175)radlans

=~ (0.958 radians.

Most calculators automatically would convert degrees into radians and radians

into degrees.

Example 5: An arc subtends an angle'of 70° at the center of a cn’cle and'its length'is

132 m.m. Find the radius of the circle.

. 3.1416 . 1
Solution: : 70°~70><W‘radlans- 180(3 1416)rad1an = radians.
AL

0 = 9 radxan and [=132m.m.

(n=3. 1416)
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6 = :r:é_132x1—9‘_108mm
Example 6: Find the length of the equatorial arc subtending an angle of 1° at the

centre of the earth, taking the radius of the earth as 6400 km.

T :
Solution: 1° = 130 radian = 3118456 radian

1416
6 = 21_8'0_ and r = 6400 km.

Now @ 4
,.

Il

31416
PN r S~ 6400}(1800000 = 111.7 km.

Example 7: Find correct to the nearest centimeter, the distance at which a coin of
diameter 'l” cm should be held so as to conceal the full moon whose diameter
subtends an angle of 31’ at the eye of the observer on the earth.

A
P
0 *‘M@ D
Observer s Moon
' C

Solution: Let O be the eye of the observer. ABCD be the moon and POSR be the
coin, so that APO and CSO are straight line segments

We know that mPS = 1cm, mZAOC = 31/
Now since mZAOC (= mZPOS) is very very small.

PS can be taken as the arc of the circle with centre O and radius OP.
31 Xm

1510 OP=r , l=lcm, 9=31"=60x180"adians
6 ="{
; r
. _ L _ 1x60x180 60x 180 1-1- o
=8 T siNm T ol e e
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Hence the coin should be held at an approximate distance of 111 cm. from the
QDSEIYERSICVCINSSIE R S C 7 pac RS
Note: If the value of 7is not given, we shall take 7= 3.1416. _ 0

.

.....

L e

1. Express the following sexagesimal measures of angles in radians:

1)) i) 45° iii) 60° iv) 75°
v) 90° vi) 105° vii) 120° viii) 135°
1X) 81502 X102 157 xi) 35°20 xii) 75° 6’ 30”
xiii) 120 40” xiv) 154° 20" xv) 0° xvi) 37
2. Convert the following radian measures of angles into the measures of
sexagesimal system:
s i o el e Ib A T
© 1) g ii) G iii) 4 w)g ; V) )
2T ALdT SO e on
vi) 3 vn)—4‘ Vlll)? ix) - X) 5
=l . 13n 1w . 25w 191
X1) 27 xu)ﬁ Xiil) 4 Xiv) 36 XV)3—2¢:
A What is the circular measure of the angle between the hands of a watch at 4
O’clock? )

4, Find 6, when:
ri) el =1.5cm, r =2.5cm ii) ([ =%32m, r= 2m
5.  Find [, when: _
i) 6= 7 radians, r=6cm ii) 0 = 65°20°, r =18 mm
6. Find r, when:

) l=5cm, 0 =pmdian i) [=56cm, 0=45°

7.  What is the length of the arc intercepted on a circle of radius 14 cms by the
* arms of a central angle of 45°?

8. Find the radius of the circle, in which the arms of a central angle of measure 1
radian cut off an arc of length 35 cm.
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10.

11.

12.

13

14.

15.

16.

17.

A railway train is running on a circular track of radius 500 meters at the rate
of 30 km per hour. Through what angle will it turn in 10 sec.?

A horse is tethered to a peg by a rope of 9 meters length and it can move in a
circle with the peg as centre. If the horse moves along the circumference of
the circle, keeping the rope tight, how far will it have gone when the rope has

turned through an angle of 70°?

The pendulum of a clock is 20 cm long and it swings through an angle of 20°
each second. How far does the tip of the pendulum move in 1 second?

Assuming the average distance of the earth from the sun to be 148x10° km
and the angle subtended by the sun at the eye of a person on the earth of
measure 9.3 x 107 radians. Find the diameter of the sun.

A circular wire of radius 6 cm is cut straightened and then bent so as to lie
along the circumference of a hoop of radius 24 cm. Find the measure of the
angle which it subtends at the centre of the hoop.

' ; : e '
Show that the area of a sector of a circular region of radius ris 5 6, where 6
is the circular measure of the central angle of the sector.

Two cities A and B lie on the equator such that their longitudes are 45°E and

25°W respectively. Find the distance between the two cities, taking radius of
the earth as 6400 kms. :

The moon subtends an angle of 0.5° at the eye of an observer on earth. The
distance of the moon from the earth is 3.844 x 10° km approx. What is the

length of the diameter of the moon?

The angle subtended by the earth at the eye of a spaceman, landed on the -

moon, is 1° 54’. The radius of the earth is 6400 km. Find the approximate
distance between the moon and the earth.
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9.4 General Angle (Coterminal Angles)

There can be many angles with the same initial and terminal sides. These are
_9
called coterminal angles. Consider an angle ZPOQ with initial side OP and terminal

—_
side OQ with vertex O. Let mZPOQ = Oradian, where 0< 0<2rm

Now, if the side OQ comes to its present position after one or more complete
rotations in the anti-clockwise direction, then mZP0OQ will be

1) 0+ 2w, after one revolution 1ii) 6+ 4, after two revolutions,

However, if the rotations are made in the clock-wise direction as shown in the
figure,

mZPOQ will be:

i) 6-2m after one revolution,

i) 6-4m after two revolution,

—_ . -
It means that OQ comes to its original position after every revolution of 27

radians in the postive or negative directions.

- In general, if angle 0 is in degrees, then 6 + 360k where k€ Z, is an angle
coterminal with 8. If angle 6 is in radians, then 8 + 2k7 where ke Z,, is an angle
coterminal with 6.

i

: ‘:5 Genei'a_l angleis 0 +2krn, ke Z,
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9.5 Angle In The Standard Position

An angle is said to be in standard position if its vertex lies at the origin of a

rectangular coordinate system and its initial side along the positive x-axis.

The following figures show four angles in standard position:

o g

An angle in standard position is said to lie in a quadrant if its terminal side lies
in that quadrant. In the above figure:
Angle orlies in I Quadrant as its terminal side lies is I Quadrant
Angle Blies in II Quadrant as its terminal side lies is II Quadrant
Angle ¥lies in III Quadrant as its terminal side lies is IIl Quadrant
and Angle @lies in IV Quadrant as its terminal side lies is IV Quadrant

If the terminal side of an angle falls on x-axis or y-axis, it is called a

180° 360°

2 X *—Ch—br ﬂoél——b\' X

v

quadrantal angle.
i.e., 90°, 180°, 270° and 360° are quadrantal angles.

9.6 Trigonometric Functions
Consider a right angled triangle ABC with ZC = 90° and sides B
a, b, ¢, as shown in the figure. Let mZA = @ radian.
The side AB opposite to 90° is called the hypotenuse (hyp),

The side BC opposite to 6 is called the opposite (opp) and AL 5 C
the side AC related to angle O is called the adjacent (adj)
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We can form six ratios as follows:

f.. .9. 3 E‘ Eandé

CRERiCE s Dt Aty v bl ihia

In fact these ratios depend only on the size of the angle and not on the triangle
formed. Therefore, these ratios are called trigonometric functions of angle 6 and are

defined as below:
: Senin o @ |oPp. ; 3.C A hyp,
Sine 6 :sin@ = ¢ = hyp’ Cosecant 0 : cscO = a = opp’
Cosine & :cos 8 = ‘E‘: %%; Secant 8 Sec9=%=%§‘j2:
; _ a _ opp, ) _b _ad
Tangent 0 :tan 0 = ' = adj * Cotangent 6: cotf =— = opp
We observe useful relationships between these six trigonometric functions
as follows:
il o Ll 5 ) T sin @
VS “dnigs ¢ FESAVE SbtiesaTg o M ALY siSniicos 9
cos 6 1
cot 0= T cotd = T
9.7 Trigonometric Functions of any angle
Now we shall define the trigonometric
functions of any angle. y
Consider an angle ZXOP = 6 radian in e
standard position. ity
y . . o 6 o
Let coordinates of P (other than origin) on < i
the terminal side of the angle be (x. v).
If r = \)®+)" denotes the distance from -

0 (0, 0) to P(x, y), then six trigonometric functions

of @ are defined as the ratios
S Y ; dits } b oty
sin 6= 3 SECRCIO = y (y#0) ; tanf = 5 (x#0)
X XA X
cos 6= = ; secl = x(x;f:O) : otB ‘_ (y;b()
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9.8 Fundamental Identities

For any real number 6, we shall derive the following three fundamental
identities:

i) sin’@+cos’f = 1
ii) 1+tan’0 = sec’ @
iii) 1+cot’@ = csc’ 6.

Proof’

(i) Refer to right angled triangle ABC in fig. (1) by Pythagoras theorem, we have

dividing & + b* = ¢* , both sides by ¢* , we get 2
azibs b c C a
el

A a
aV () A b C
= H +H i Fig.(1)
c c
=  (sin@) +(cos@) =1
o [ sin® 6+ cos*6=1 | (1)
ii)  Againas a’+b° =c’

Dividing both sides by b?, we get

a* 1!72_1&‘2
TR SERE S R

- (o)

= (tan8) +1=(sech)*

= |[1%tan® 0 = sec*6| )
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(i) Againas a®+b* =¢°
Dividing both side by a®, we get
+
2 2
-
a a

= 1+ (cot8)'= (csc)

QrJ bm
Qr.{ G;'d
Q'J 2

|1+cot? 6 = csc? 6] (3)

-__:_'(cos 8)2 cos 6 and (tan 6) tanzﬂ etc

(=B

- 9.9 Signs of the Trigonometric functions
If 6 is not a quadrantal angle, then it will lie in a particular quadrant.

Because r = sz +y? is always positive, it follows that the signs of the trigonometric
functions can be found if the quadrant of 6 is known. For example,

i) If 6 lies in Quadrant I, then a point P(x, y) on its terminal side has both x, y
co-ordinates +ve

= All trigonometric functions are +ve in Quadrant I.

(1) If @ lies in Quadrant II, then a point* P(x, y) on its terminal side has
negative x-coordinate. and positive y-coordinate.
. sing=2 = +ve >0,cos @ S = -ve <0, tan 6 ;1=—ve <0
r r i x
(iii)  If @ lies in Quadrant III, then a point P(x, ) on its terminal side has negative

X—coordinate. and negative y—coordinate.
. sin@ =2 =_ve <0, cos 6 -i——Ve <0, tan @ = Y _ive >0
r r SRR .

@v) If @ lies in Quadrant IV, then a point P(x, y) on its tezmmal side has positive
x-coordinate. and negative y-coordinate.
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) x '
= sm9=l=—ve <0 cos@ === +ve >0 tanf =-ve <0
r r

These results are summarized in the following figure. Trigonometric
functions mentioned are positive in these quardrants.

Ay
S0 11 Quad I Quad All +ve
csc >0
< P x
tan6 >0 1T Quad IV Quad cos6>0
ua a
cotf >0 # i sec6 >0
It is clear from the above figure that
sin (—6) = - sin 6; csc (@) =—csc 6
cos (-60) = cos 6; sec (-0) = sec @
tan (-6) = —tan 6; cot (—6) =—cot 6
Example 1: If tan 6 = 1—85' and the terminal arm of the angle is in the III quadrant,
find the values of the other trigonometric functions of 6. '
: 8 ; ot Sl iy 15
Solution: tan @ = 15 Wcotlgr = e
2
. l Lol BN GASIEORO,
secﬂ__ 1+tan“ 0 = 1+(15 _1+225_.225
' 289 17

"> The terminal arm of the angle is in the III quadrant where sec 0 is negative

17



" A Textbook of Algebra and Trigonometry

We can form six ratios as follows:

AIEEHIE g WIECER Ve b
=t ) T P =T oA and =
ClNCE Wb al: ob a
In fact these ratios depend only on the size of the angle and not on the triangle

formed. Therefore, these ratios are called trigonometric functions of angle 6 and are

defined as below:
Sine 6 :sin@ = % = %5‘3‘; Cosecant @ : cscO =§ = %‘E‘%;
Cosine @ :cos 6 = % = hi;% Secant® : sec@ =§ =%‘§JE:
Tangent 8 : tan 8 = % = %%}2; Cotangent 8: cot 6 =% =§;‘i§-

We observe useful relationships between these six trigonometric functions

as follows:
0 1 . ) sin @ _
SRS v e’ SeCO8 Slvgsrg bl 209 S nios 9.
cos 0 1
cot = S cotf = =l

9.7 Trigonometric Functions of any angle
Now we shall define the trigonometric

functions of any angle. :

Consider an angle ZXOP = 0 radian in
standard position.

Let coordinates of P (other than origin) on < 0
the terminal side of the angle be (x. y).

If r = \[X*+) denotes the distance from v
0 (0, 0) to P(x, y), then six trigonometric functions
of 6 are defined as the ratios

P

b P(x,y)

sin 60.= R CSCIO = (y#0) ; tan @

I% 2
®ix & Ix
1l

1 secB =

cos 6= (x#0) ; cot® = = (y#0)
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9.8 Fundamental Identities

For any real number 6, we shall derive the following three fundamental
identities:

i) sin®O+cos’f = 1
ii) 1+tan’@ = sec’ 6
iii) 1+cot’@ = csc’ 6.

Proof:
(i) Refer to right angled triangle ABC in fig. (1) by Pythagoras theorem, we have

dividing &’ + b* = ¢’ , both sides by ¢, we get 2
a b 9 c c .
CAEEl =
2 p Y A< b C
= [E{} +[_J -1 Fig(l)
c c
= (sin@) +(cos@) =1
- | sin®* @+ cos® O=1 | (1)
ii) Again as a’ +b* =¢?

Dividing both sides by 5%, we get

2
7 +

5 e =(J

= (tan8)’ +1=(sech)"

|,
Il

= |1+t81129=86029| 2)




A Textbook of Algebra and Trigonometry.

1 1 15
Now cos@ = R .1_1=_17
S
. 8( 15
sinf = tan6'.c056=15[_17]
: 8
sin@ = -17
1 1 17
and cscl9=s.m9=_'§_=—8
17

Example 2: Find the value of other five trigonometric functions of 6, if
12 :

cos 6=77 and the terminal side of the angle is not in the I quadrant.

Solution: The terminal side of the angle is not in the I quadrant but cos 6 is positive,

*. The terminal side of the angle is in the IV quadrant
1 1 13

Now sec@ = cosG=T_E 12
13
2

12 144 25
Sy e e Sl el () 7 TSR ©C . S
sin“@ = 1—cos“8@ =1 (13)_1 169 = 169
' 8
sin@ = 13

As the terminal side of the angle is in the IV quadrant where
sin @ is negative.

. g
sinf@ = -13
9 T 1 __]'.___'__..]é
B anf | Sk=s S
13 :
SF
sinf@ 13 5
BUUE S o 2R 12
. 1
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Find the signs of the following:

i)  sin 160° ii) cos 190° iii) tan 115°

1v) sec 245° v) cot 80° vi) cosec 297°

Fill in the blanks:

i) sin(=310°) = ...sin310° i) cos (=75°) = ... cos 75°
iii)  tan(~182°)=-:-tan182° iv)  cot(=173") =---cot137°
v) sec(-216°) = ... sec2l6° vi) cosec (—15°) = ... cosec 15°
In which quadrant are the terminal arms of the angle lie when

i) sin@<0 and cos 8> 0, ii) cot @>0 and cosec 6> 0,
iii) tan 6<0 and cos 6> 0, iv) sec #<0 and sin 6<0,
v) cot8>0 and sin <0, vi) cos 6<0 and tan 6<0?

Find the values of the remaining trigonometric functions:

i) sinf= % and the terminal arm of the angle is in quad. I.

ii) cos 8= :19_1 and th.e terminal arm of the angle is in ‘quad. IV.
iii) cos @=— 32'@ and the terminal arm of the angle is in quad. III.
iv) tanf= -% and the terminal arm of the angle is in quad. II.

1 :
V) sin@=- \—/—5 and the terminal arm of the angle is not in quad. III.

15 : .
If cot = 3 and the terminal arm of the angle is not is quad. I, find the values

of cos @ and cosec 6.
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m-+1 T '
6. If cosec 6 = T and m)0 (0< 9<5) , find the values of the remaining

lrigonometric ratios.

1 ; ;
7. If tan B = \_ﬁ and the terminal arm of the angle is not is the III quad., find the;

csc’ @—sec’ @

Values offissesy s .
csc” O+ sec” @

8. If cot 6 = % and the terminal arm of the angle is in the I quad., find the value

3 sin 6+ 4 cos 0
cos O0— sin @

'9.10 The values of Trigonometric Functions of acute

angles 45° 30° and 60° 3
Consider a right triangle ABC with mZC =90° and ¢ P
sides a, b, ¢ as shown in the figure on right hand side.

A
b C

(a) Case 1 when m/A = 45° = %radian

then m4£B = 45°
= AABC is right isosceles.

As values of trigonometric functions depend only on the angle and not on the
size of the triangle, we can takea=b =1

By Pythagoras theorem,

c’=a’+b’
S hCe=1+1=2
beyp o Joa/z
- Using triangle of fig.1, with a=b=1 and ¢ = V2 Fig (1)
' 1

sindsy= 2 = cscd5s’= ——=42;
@ A sin45
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1 0 1
— sec45 = =J§;‘
15 cos45°
1

: cotds’ = :
52 tan 45°

cos 45° =

SR oo

tan 45° =

-"(b) Case2: when mZA=30° =% radian,

then m«£B =60°
By elementary geometry, in a right triangle the measure of the side opposite

to 30° is half of the hypotenuse.
Letc=2thena=1

. By Pythagoras theorem, a*+b*=c* B
= b’=c’-a’ c=2~-60°
. a=1
=4l 30°
=3 A C
o b=V3
=b=13 Fig (2)
.. Using triangle of fig.2, with a=1,b =+/3 andc =2
T NP e e
2 sin 30°
Cos 30 = £=£; sec 30° = . =-—%-;
chiss? cos30° 3
1 1
tan30°= —= —; cot30 = =
V3 tan30°

(c) Case 3: when mZA =060 = -;:' radian, thenm £ B = 30’

By clclmentary geometry, in a right triangle the measure
of the side opposite to 30° is half the hypotenuse.

Letc=2thenbh =1
. By Pythagoras theorem,
a®+b* =c?

=t 'a2.=C2 -_bz =
=4-1=3
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=B
. Using triangle of fig.3, with a =+/3, b=1andc =2
sin 60°= £ i5-; csc 60° = ! =i;'
). sin60° /3
cos 60° = b l; sec 60° = 1 =2;
c 2 cos60°
1 1
tan 60° = L «/5; cot 60° = =,
b tan60° /3
Example 3: Find the values of all the trigonometric functions of
- 197
i) 420° i) —— —
(1) (ii) 7 (iii) =
Solution: Weknow that 0 +2kwr =0, where ke Z
(1) 420°=60°+ 1(360°) k=1)
=60° i
3 2
- sin 420° = sin 60° = —; csc 420° = —
2 B
. 0 0 1 0
cos 420° = cos 60° = E : sec 420" = 2
. . tan 420° =tan 60° = /3 : cot 420° = sl
V3
—Ir T
ii — = —+(-1)27x k=-1
(ii) n 7 (=1) ( )
=
4
3 . (-T= (i 1 -\
B <o Sl | —— |=8In | — |[= — = CSC
(EE)-m(E)- ks () e
i b e 4 %5,
! 3 =T b5 1 -
3 COS | —— |=cos | — |=—: ' sec|—=|=sec
( 4 ] (4] V2 { 4 ) (
1 [ . -

S e T ——— e o o
‘ e e o
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= = r
tan I = tan x = (] cot -E- =cot | — [=1
4 4 <4 4

@) ) (k=3)
3 3
_
T3
[191] (n] V3 (197 o\l 2
sin | — |=sin| = |= —; csc | — [=csc | = =T,
3 3T 2 Galir 37 B
[li [EJ 1 (197 ) (7))
cos|— |=cos|— |=— ; sec| — |[=sec|—=|=2 ;
3 3)72 =8
7107 ) 7
tan |2 |t | oot L2E0 | oo [ 21| N
3 \ 3 ) \3) 3

9.11 The values of the Trigonometric Functions of angles
0°, 90°, 180°, 270°, 360°.
When terminal line lies on the x— axis or the y— axis, the angle € is called a
quadrantal angle.

Now we shall find the values of trigonometric functions of quadrantal angles
0°, 90°, 180°, 270°, 360° and so on.
(a Wheno =0°

The point (1, 0) lies on the terminal side of angle 0°

= x=1 and y=0 0  Angle 0 5:{1,0}-”
so r=qx"+y* =1
0 ' 1 1
& st 0°=2=—=0 csc 0% = = —
sin T G0 S (undefined)
cos(}°=£=l=l sec 0° = 1 = =i
7l cos0 .
0 o 1 1
tan0°= 2 = —=0 cot0°= —— = — (undefined
50 a0l Do
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(b) When 6 =90°

The point (0, 1) lies on the terminal side of angle 90°. PO, 1)

= x=0 and y=I 90°
2 2

0 X
sm90°=—)i=l=1; csc 90° = — : = =1;
] sin 90
cos 90°= X — 9_ =0; sec 90° = l = = l (undefined);
roane] cos 90 0
tan 90°= 2 = L (undefined); Coto0= " £ 9 =0!
x 2340 y 1

(c) When 6 = 180° 180°

P sl

P(-10) O

The point (-1, 0) lies on the terminal side of angle 180°.
= x=-1 and y=0

$0 r=qx*+y? =1

wsin180°=2 =2 _g; csc180°= L~ = 1 (undefined):
: r 1 y 0
cos 180°=-’£=:-1=_1; sec 130°=£=_1_=_1;
e x -1
tan 180°= 2 = 0. =0; cot 180°= =X = L (undefined).
X -1 . y 0
(d) When 6 =270° s
The point (0, —1) lies on the terminal side of angle 270°. %

= x=0 and y=-1

P(0, -1)
SO r=‘\/x2+y2 =

=-l; csc 270° =

e S



cos270°= = = g =0; sec 270°= L = i (undefined);
r 1 e
tan270° = 2 = 0 (undefined); cot 270° = L= £ =0.
x 0 y -1
Example 4: Find the values of all trigonometric functions of
(1) 360° (ii) % (iii) Swm
Solution: We know that 8 +2km =6, where ke Z -
(i) Now 360°=0°+ 1(360°, (k=1)
=0Q°
sin 360° = sin 0°=0; csc 360"_ is undefined;
cos 360° =cos0°=1; sec 360° = 1 — =1
. cos0
tan 360° = tan 0° = 0; cot 360° is undefined.
(i) We know that 68 +2krm =6 , where ke Z
/4 3
Now —-= = 2Z -2 (k=-1
ow 2 2 (-1) ( )
o
2 »
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.,

(iii) Now 5t =z#+2(2mw) (k=2)

=X
ssin St = sinxw =0; csc Sr is undefined;
cos St =cos T =-1; sec 5t =-1;
tan St = tan ¥ =0; cot 5m is undefined;

ii)

iii)

1v)

3.

: 2s1n45°+ - cosec 45° = \-?—-
E
TGy

VerifyTthe following:

sin 60° cos 30° — cos 60° sin 30° = sin 30°

P DU TS
g+sin’3+tan’y =

2t 2 2T

sm6sm4sm§ 1524435 4
Evaluate the following:

n T 1 2 I
et . l=tan'3
N G =

Pt tan < { + tan?=
fardiliztan 3

Verify the following when 6 = 30°; 45°

i) sin20 = 2sin Ocos O ii) cos20= cos?@—sin’ @
iii) cos 20=2cos’0 —1 iv) cos26=1-2sin’0

2 tan 6
v) tan20 = =1_ 0

Find x, if tan” 45° — cos” 60° = x sin 45° cos 45° tan 60°.

Find the values of the trigonometric functions of the following
quadrantal angles: :
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D
i) -m i) —-3n iii) T
. 9 : =
iv) -5 T v) —15m vi) 1530
vii) —2430° viii) % T ix) .1412)2. T
6. Find the values of the trigonometric functions of the following angles:

i) 390° i) -330° ii) 765°
iv) —675° v) i?-n‘ vi) En‘

3 3
vii) %571: viii) _Tﬂn ix) -1035°

9.12 Domains of Trigonometric functions and
of Fundamental Identities

We list the trigonometric functions and fundamental identities, learnt so far
mentioning their domains as follows:

i) sin@ - forall 6e 7R
ii) cos6 , forall 6 7R
iii) csc 0= .1 S forall 8 7R but 8#nm, neZ
sin 6
i e forall O R but 6= (2L Z
iv) sec 6= AT 3 or u 5 |m ne€
sin O n
v) tan@= 0 3 forall 6 7R but 6+ (2n+l)5, neZ
vi) cotf= % > forall e 7K. but O#nm, ne Z
vii) sin?@+cos’O=1 forall e R
n
viii) 1+ tan’ @=sec* 6 , forall 6 7R but 6+ (@2n+l)5, neZ.
ix) 1+cot? 8=csc* 0 , forall 6 7R but 0#nm, : ne Z

] Now we shall prove quite a few more identities with the help of the above e
| mentioned identities. ' :

———
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Example 1: Prove that cos' —sin* 8= cos® §—sin’ 6,

Solution: L.H.S.=

cos' §—sin' @

(cos® 8)% — (sin® )

(cos® 8+ sin’ 6) (cos® 8- sin® 6)
(1) (cos* @ - sin” 6)

cos’ 6—sin’ 6= R.H.S.

Hence cos® 8— sin® 8= cos? 8- sin’

Example 2:

2 E

Prove that : sec’

2
A + cosec

nrwT
[Where A FE o= Z)

~ Solution: L.H.S.=

sec’ A + cosec® A

1 1 sin’ A + cos® A

forall e 7R

(- sin® 8+ cos’ 6=1)

A = sec’

cos’A TsinA = cos’Asin’A
1

—

cos A sin” A

1 1
cos’ A " sin’ A

sec’A.cosec:A = RHS.

Hence sec’A + cosec’ A =sec’ A . cosec A.

: 1 —sin 6
Exfunple 3: Prove that: f1+ n 0=
multiple of 7 .
Solution: L.'H.S = —llne
1+sin @

. |1—sin @ 1—sin @
1 +sin @ 1—sin @

[~ sin*A +cos’A =1]

sec O—tan 6, where 0 is not an odd

(rationalizing.) -

2
A cosec” A

Pttt
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(1 —sin ) _l—sin@
cos’® ~ cos@

= ﬁ_ 2;23—5m9 tan 6 = RH.S.

Hence "\ /1_—&9 = sec O—tan 6.
1 +sin @

Example 4: Show that cot® 8 + cot® 8 = cosec* 6 — cosec? 6, where 0 is not an

: n
Integral multiple of 2

Solution: LHS. = cot*8+cot’ 6
= cot’ O (cot’ 6+ 1)
= (cosec” 6— 1) cosec’ 6
= cosec* - cosec’ 0
= ‘R.H.S.

Hence cot* 8+ cot? @ = cosec* 8- cosec? 6.

Prove the followmg 1dent1tms state the domam of in each case:

1 tan @ + cot O = cosec B sec @ 2. sec @ cosec Osin Ocos 6= 1

3. . cos 6+ tan @sin 6=sec 0 4. cosec 6+tanfsech = coseclsec? §

5. sec? 6— cosec® O =tan’ 8 — cot® O

6 cot” @—cos” @=cot’ @cos’ @ 7. (sec O+ tan 6) (sec O—tan ) = 1

1—tan’ @ '

2 WP s 29 u2g._4—tlan U

8 2cos0-1=1-2sin"0 9. cos® 6—sin 9_1+tan29

To) | S2SO=SINORRCOAgE 115 = e

cos O+sin @ ~ cot O+ 1 1+cosé@



2
cot” 61 2
1+cof g 208 6-1
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1 + cos 0 5
13. Ecatin) = (cosec 6+ cot )
1—sin @
2 _1—Sm0U
14.  (sec 6—tan 6) T
2 tan 6 .
15. 1 5tan2 = 2 sin O cos 6.
1 —sion @ cos @
16.

c0s® ~ l+sin@
17.  (tan 8+ cot )* = sec? Ocosec? O

tan 6 + sec B 1
tan 6 —sec 6+ 1

18. = tan O + sec @

1 1 1 1
cosec 0—cot@ sin@® " sin@  cosec O+ cot 2

19.
20.  sin’ 6—cos® @ = (sin B cos 6) (1 + sin @ cos 6)
21.  sin® 6-cos® @ = (sin® 6— cos? 6) (1 — sin* @ cos” 6)

22, sin® @+ cos® 6 = 1 —3 sin® B cos? @

1 1 2
B Tisin0*T—sing = 2¢O
2. cos O+sin @ cos O—sin O 2

c0s 6—sin 6 cos O+sin 6 = 1—2 sin §
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10.1 Introduction

In this section, we shall first establish the fundamental law of trigonometry
before discussing the Trigonometric Identities. For this we should know the
formula to find the distance between two points in a plane.

10.1.1 Distance Formula: ;
Let P(x,,y,) and Q(x,,y,)be two points. If “d * denotes the distance between them,

then  d=lPQl=(x—x%)"+(-,)

Ao ' ='\[(x2_xl)z+(y2_yl)z

i.e., square root of the sum of square of the difference of x-coordinates
and square of the difference of y-coordinates.

Example: Find distance between the following pdilits:
i) AQG338) S B(5,6)
ii) P(cosx,cosy), Q(sinx, sin y)
Solution:

i)  Distance=4B1={(3-5 +(8—6)" = V4+4 =8=24/2 -
537 +6-87 =a+a=8 =2V2.

i1) Distance = J(cosx— sin x)? + (cos y — sin y)?

= JJcos? x+sin? x—2cosx sinx +cos® y+sin® y—2cosy siny.

= J2—2cosxsinx—2cosy sin y

= /2 2(cos xsinx+cos y sin y)
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10.1.2 Fundamental Law of trigonometry
Let e and B be any two angles (real numbers), then

lcos (= ) = cos acos B+ sin osin B

which is called the Fundamental Law of Trigonometry.
Proof: For our convenience, let us assume that a> > 0.

_ Consider a unit circle with
centre at origin O.

Let terminal sides of angles
and B cut the unit circle at A and B
respectively. EvidentlyZAOB=a—-f8
Take a point C on the unit circle

so that ZXOC = m/ZAOB = a—p.

Join A,B and C,D.
Now angles ¢, fand a — f are in standard position.
The coordinates of A are (cos @, sin @)

the coordinates of B are (cos f3, sin )

the coordinates of C are (cos & — 3, sin & — )
and the coordinates of D are (1, 0). ‘
Now AAOB and ACOD are congruent. [(SAS) theorem]
48| =|cD|
= 4B’ =|cD[’

Using the distance formula, we have:
(cos a— cos B)>+(sin a— sin B)* = [(cos(a—B)—1]%+[sin (a—B) — O
=  cos’ a+ cos’ B—2 cos ecos B+ sin® &+ sin” B—2sin asin B
. = cos’(a— P)+1—2cos(a—p) + sin’(— B)
=  2-2(cosacosfB+sinasinf) = 2-—2cos(a—p)
Hence cos (a—p) = cos acos + sin e sin 5.
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Suppose we know the values of sin and cos of two angles o and f3, we can
find cos(a — B) using this law as explained in the following example:

: T
Example 1: Find the value of cos 1

= 15° = 45°-30° ==—-=
4

ol

Solution: As

: 2 M. T KT
e C0312 = COS§ 4—6 =COS4COSG+SIH4SIH6

PR E L Bl
— ‘\/'i - 2 ‘\!5 . 2 - -— 2@ .
10.2 Deductions from Fundamental Law

1) We know that:
cos(x—f) = cos acos B+ sinosinf

|¢l

T, .
Putting o= 2 in it, we get

cos(:?JE - }3) :

/i1 T
cos 7 cos B+ sin7 sin 3

T
= cosE—ﬁ = 0.cosfB+1.sinf cos—=0,sin£=1
2 2 2
ccns(%r —BJ = sin ()

2) We know that:
cos (@x—f)) = cos acos f+ sin asinf

: ..
Putting f=— 5 init, we get

s[ E] LA T (e
Ccos| O — —2 = COSG.'.COS'"Z +smasm—2

: /4 A _
= sm[— E]= _SIHE =—1
= cos[cn 5) = cos . 0+sin a(—1)



A Textbook of Algebra and Trigonometry

3)

4)

5)

"

T : H
cos(§+ a:) = —sin & (i1)

We know that: -

cos[%r - B) = sin B [(3) above]

i1
Putting ﬂ=5+a in it, we get
S[E z (7

.4
= cos(—0) = sin(§+ a)

‘ b4
=>ENCOS O/'= sin(i + a] {" cos(— ) =cos a}
(=
snn[§+ a) = cos . (111)
We know that:

cos(a—ff) = cos a.cos B+ sin asin B
replacing 8 by -8 we get
cos[@—(=p)] = cos acos (- f) + sin asin (= f)
{*= cos(— ) =cos B, sin (- B) = - sin B}
= |cos(a+ f) = cos acos B—sin o:sin ff] (iv)
We know that:

cos(a+ P) = cos acos f—sin a sin B

replac_ing o by %-{-a,we get

ol ol sl

s . :
= co§5+(a+f)| = —sin acos B—cos arsin B
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= —sin(a+p) = —[sin acos f + cos asin f]

[sin(cr+ ) = sin axcos B+ cos asin fB| (v)

6) We know that:

sin(d+ f) = sin acos B+ cos asin B [from (v) above]
replacing B by — B, we get
sinfco— f) = sin & cos (— PB) + cos asin (— f)

{ sin(= ) =—sin
cos(— ) =cos

|sin(@—B) = sin a.cos B— cos asin f| (vi)

7 We know that:
cos(a—f) = cosacosf+sina.sin f

Let c=27 and B =¢

cos(Qr—6) = cos 27. cos 6+ sin 27 sin 6
¥ cos2wr =1
= |l.cos @+0.sin@ ;s {sin27£=0
= cos @

8) We know that sin(a— ) = sin . cos B—cos . sin B

sin2r—60) = sin27m.cos 6—cos 27zsin @
= 0.cos@-1.sin6 [2:5221:-(:
= —sin @ (viii)
9 T sin(a+ ) E sin a;cos B+ cos [0 s.in B
cos(a+f) ~  cos arcos B—sin asin B
sin @cos B cos asin Dividing
cos a.cos B cos azcos B up and
~ cosacosf sinasin B down by
cos cos B cos acos 8 COS£0ZCOS
an(@s B = 1 e g p &2
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sin(a—f) sin @ cos B—cos asin 8
cos(x—f) = cos acos B+ sin asin B

10) tan(a— )

I

sin @cos B cos asin 8 Dividing
cos acos B cos a.cos fB up and
~ cosacos B sinasin B down by
cos axcos B cos acos B cos e cos f3
tan o —tan 3
an(asHi= 1 + tan o tan (*x)

10.3 Trigonometric Ratios of Allied Angles

The angles associated with basic angles of measure 0 to a right angle or its
multiple are called allied angles. So, the angles of measure 90° + 6, 180° + 6,
270° £ 6, 360° * 6, are known as allied angles.

Using fundamental law, cos(o — ) = cos a cos B + sin o sin Band its
deductions, we derive the following identities:

sin(%r — ) =cos 0 , cos[ GJ sin @ , tan(2 9) cot @
siu[§+ 9) = c'os 0, cos(‘*-r- 9]: —sin @ , tan(g+ 9]: —cot 0

sm(n' 6) =sinf, cos(m—6) =—cos @, tan(r—60) =—tan O
sm(:r+ 6) =-—sin@, cos(r+ B)=—cos O , tan(w+ 6) =tan O

37 in

sm(— O|=—cos 0, cos[2 - ]=-sm9 tan( Gj—cotﬁ
3r 3z

—+6=—0059 cos| - +9—sm6 tan 2+9=—cot9

sm(27r 0) =—sin 6 , cos(2r— 6) =cos 0 , tan(2r— 6) = — tan O
sm(2:r+ f) =sin @, cos(2w+ B)=cos 8 , tan(2w+ ) =tan 0

1) If 6 is added to or subtracted from odd multiple of right angle, the
trigonometric ratios change into co-ratios and vice versa.
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1e., sin — Cos, tan —)E cot, sec -—)E cosec

3n
e.g. sin(g— 9] = cos & and cos(7+ 6) = sin 6

If 6 is added to or subtracted from an even multiple of g , the trigonometric
ratios shall remain the same. :

So far as the sign of the results is concerned, it is determined by the quadrant
in which the terminal arm of the angle lies.

sin(t— @) = sinf, tan(w+ @) = tan B, cos(2mw—6) = cos 6.

Measure of the Quad.
angle _.’f
%_9 I sin +ve All +ve
%r+90r7r—9 I X+ 9 > x
T+ 6 or%_g 111 tan +ve COos +VE
3n 7
S +0or2n—6 v

T 3n 3
In sin(g— ) sin[i + 6) sin(?- 9] and sin[%ﬁ 6]

' Tt
odd multiplies of 7 are involved.
sin will change into cos.
Moreover, the angle of measure

1) (';E - 9] will have terminal side in Quad.I,

T
So sin (5- J=cos [

ii) @ + 9] will have terminal side in Quad.II,

So s.in(’—zr + 9]= cos 6;



' \l - A Textbook of Algebra and Trigonometry,

3r
iif) [?— 9) will have terminal side in Quad.III,
3n
So sin(? - J: —cos 6
- 3n . DB e 1
1v) 3+ 6 |will have terminal side in Quad. IV,

3
So sin(%r + 6] =—cos 6.

b) In cos(7 - 6), cos(7 + 6), cos(2w— 6) and cos(27 + ), even multiples of g

are involved. :
cos will remain as cos.

Moreover, the angle of measure

i)  (m— 6) will have terminal side in Quad. II,
. cos(w— 6) =—cos 6,

ii) . (m+ 6) will have terminal side in Quad. III,
~.cos(mr + 6) =—cos 6,

iii) (27— 6) will have terminal side in Quad. IV:
= cos(2w— 6) =cos 6,

iv) (2zm+ 6) will have terminal side in Quad. I

. cos(2m + 6) =cos 6.

Example 2: Without using the tables, write down the values of:

i) cos315° i) sin540° iii) tan (—135°) iv) sec (—300°)
Solution:
i) cos 315° = cos (270 + 45)° = cos (3 X 90 + 45)° = + sin 45° = %

ii) sin 540° = sin (540 + 0)° = sin (6 X 90 + 0)° =sin 0 = 0
i)  tan (=135°) = —tan 135°=—tan(180—45)°= —tan(2x90—45)° =—(—tan 45°) =1

1v)  sec(=300°) = sec 300° = sec(360 — 60)° = sec(4x90-60)° = sec 60° = 2.
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Example 3: Simplify:

sin (360° — 6) cos(180° — 6) tan(180° + 6)
sin(90° + 6) cos(90° — ) tan(360° + 6)

{ sin(360°— 6) =—sin @, cos (180°—6)=-cos 8

tan(180°+ @) =tan @& , sin (90° + 6) _=cosG
cos(90°—6) =sin€ , tan(360°+ 6)=tan @
sin(360° — 6) cos(180° — 6) tan(180° + 6) _ (=sin 6) (~cos 6) tan 8
cos @.sin 6. tan @ ~ cos6.sin@.tan 6

Solution.

=1

1. Without using the tables, find the values of:
i) sin(-780°) i) cot(-855°) iii) csc/(2040°)

iv) sec(-960°) v) tan(1110°) vi) sin (—300°)
2. Express each of the followmg as a trigonometric function of an angle of
positive degree measure of less than 45°.
i)  sin 196° ii) cos 147° iii) sin 319°
iv) cos 254° v) tan 294° vi) cos 728°

, vii) sin (- 625°) viii) cos (—435°) ix) sin150°
3 Prove the following:
1)  sin (180° + @) sin (90 — &) = —sin @ cos &

ii)  sin780° sin 480° + cos 120° sin 30° = %

iil) cos 306° + cos 234° + cos 162° + cos 18° =0
iv) cos 330° sin 600° + cos 120° sin 150° = —1.
4. Prove that:

: 5
sin? (7 + GJtan(—;'[+ 9)

= cos @

1) 3r
cot? [7 - 6)(:05z (- 6) cosec 2w— 6)

cos (90° + 6) sec(— 6) tan(180° — )
i 5ec(360° —.6) sin(180° + 6) cot(90° - 6) il

R —————
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If o, B, 7 are the angles of a triangle ABC, then prove that

i) sin(a+p) = siny ii) cos (a—;g) = sin%’
iii) cos(a+ pB) = cosY iv) tan (a + f) + tan y=0.
10.4 Further Application of Basic Identities
Example 1: Prove that
sin(@+ P) sin(—PB) = sin® ¢—sin’ B @)
= cos’f—cos’ & (i)

sin (a+ f) .sin(a— 5]

= (sin acos B+ cos asin ) (sin & cos B — cos a sin B)

Solution: L.H.S.

= sin’ acos’ B—cos’ asin’ B
= sin’ o1 — sin’ B-1- sin’ @) sin’ B
= sin* @— sin® asin’ B—sin’ B+ sin> & sin’ B
= sin’ @— sin® B )
= (1-cos’@)—(1-cos’p)
= l-cos’@—1+cos’p
= cos’fB-cos’a (i1)

Example 2: Without using tables, find the values of all trigonometric functions
of 75°.

Solution: As 75°= 45°+ 30°
sin 75° = sin (45° + 30°) = sin 45° cos 30° + cos 45° sin 30°

L
cos (45° + 30°) = cos 45° cos 30° — sin 45° sin 30°
- (@2 )65

tan 45° + tan 30°
(40— o °) —
tan 75° = tan (45 +30.)_—1_. 25° tan 30°

]

cos 75°
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& I+ﬁ —\[5.'-1
1-1.:!—% \/5."1
1 \B-1
tan75° ~ \[3+1
1 22

cosec 75° = sin’?5°=\(§+1

1 A2

and sec 75 =; COS75°=‘\J§—]
cos 11°+sin'11°
cos 11°—sin 11°

cot 75° =

= tan 56°.

Example 3: Prove that:

Solution: Consider

R.HS, = tan'56° = tan(455. 11¢) o sk ol |+
.= tan 36" = (@3, W) s ass a1

sin 11°
1+tanll®  “*oos11°" cos11°+ sin11°
1-tan11° = _ sin11° " cos11°—sin11° —
“cos11° '

L.H.S.

cos 11° +sin 11°
cos 11°—sin 11°

Hence = tan 56°.
24 9 W
Example 4: If cos a=— 55 tan f= 20 » the terminal side of the angle of measure &
is in the IT quadrant and that of B is in the III quadrant, find the values of:
i) sin(a+p . ii) cos (a+ P)

In which quadrant does the terminal side of the angle of measure
- (a+ P)lie? ' '

Solution: We know that sin* @+ cos @ = 1

- oo [NE3T0 S SR ETRe
sin@ =t \/l-cos’a =+ 1"625=i_‘62_5_=¢25

As the terminal side of the angle of measure of & is in the II quadrant, where
sin & is positive. il et 515 . ' : :
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. . sina= 25

81 41
Now sec fi= :I:‘\,l+tan:ﬁ :t:‘\f1+1600 =% 75

As the terminal side of the angle of measure of f§ in the IIl quadrant,
so sec fis negative

4
sec = —ﬁ% and cosfB = —i._i

sin f= i'\ll cos’ B = "\ﬂ lgg(l} = ii

As the terminal arm of the angle of measure S is in the III quadrant, so sin Bis

negative
sinf= -
sin(+ f) = sin acos B+ cos asin
! R (ET58) (40 24\ S5
e \255)\C 41)5\E 25 )\ T4
—-280+ 216 64
5 1025 T 1025
and cos(a+fP) = cos o cos - sin a sin
_ (L2840 (1) S
= \E5 N7 25 JU 41
_ 960 +63
I 1025
_ 1023
10258

sin (a+ f) is—ve and cos (a+ P) is + ve
. The terminal arm of the angle of measure (& + f) is in the IV quadrant.
£ 'Exmnple 5: If a, B, yare the angles of A ABC, prove that:
i tana+tanﬂ+tany= tan o tan Stan ¥y

Eérz

i'*! “’“2 gy 2”“2"““2

i
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Solution: As o, B, ¥ are the angles of AABC,

a+B+y = 180°
a+f = 180°-y
tan(@+fB) = tan(180°—9)
> tano+tanff ey
l-tanatan g - 207
= tano+tanf = —tany+tanoitan Btany
tan @+ tan B+ tan Y= tan a'tan Stan ¥
As a+fB+7y=180° :>%+g+%,=90°
L o 37 '
505 tiou=i i
a B Sl
&, oop |
b Pt TN =1
= 1 a E_cotz_ 7
& Al )
Y oty o CrsEa
= tf"’z“mz 9t =Sl tani iy
a
tanztang+tangtan2+tanztan2—l

Example 6: Express 3 sin 6 + 4 cos 6 in the form r sin(6 + 'qb), where the terminal

side of the angle of measure ¢'is in the I quadrant.

Solution:

Let 3 =rcos¢ and 4 = rsin¢
324+ 4% = 7 cos? ¢+rzsm ¢
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& 4 rsing
= 9+16 = rz(cosz¢+sin2¢) 3=rcos¢
= 7k =N < 4
Tl 2 = 3-tan¢
=% i =S 4

< tng =3

3sin 6+4 cos = rcos ¢sin 8+ rsin ¢ cos 8
= r(sin 6cos ¢ + cos Osin ¢)
= rsin(0+ ¢)

where T =ty and ¢=tan'%

10 Prove that:

i) sin(180°+ 6)=—sin @ ii) cos (180°+ 8) =—cos @
iii) tan (270° - @) = cot iv)  cos (68— 180°) =—cos 6

v) cos (270° + 8) =sin @ vi) sin (6 + 270°) =—cos @
vii) tan (180° + 6) =tan viii)  cos (360° - 6) = cos 6
2. Find the values of the following:

1) sin15° ii) cos 15° iii) tan 15°
iv) sin 105° v) cos 105° vi) tan 105°.
(Hint: 15° = (45° — 30°) and 105° = (60° + 45°).

3. Prove that:

1) sin(45°+ Q) = é (sih Qa + cos 0)

i) cos(a+45°= % (cos a—sin @)
‘4. ' Prove that:

) tan(45°+A)tan(@5°-4) = 1 ii) m(§—0)+tan(§ff+ 9)

i
(=]
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10.

11.

iii) sin (9+%r)+ cos(9+';‘r) = cos @

0
‘ sin 6— cos @tan 5 0 1—tan @tan ¢ cos(0+ 9)
iv) A= Lilgy v) 1+tan Otan @  cos (6—9)

cos @+ sin 9tan2

Show that: cos(a + f) cos(c:— f) = cos® a— sin? B'=cos’ B—sin” &

sin(a + ) + sin(a— ) e
cos(o+ PB) + cos(a— ) =

Show that:

Show that:

cotacotg—l 3 . cotacotg+l
ii) cot(a—p) =

cot a + cot 8 =~ cotf—cota

tan+tan f _ sin(a+ )
tan @—tan § ~ sin (@-f)

i) cot(a+p =

iii)

If sin o= 5am:lcosﬁ i?.whcre 0<a< and 0<ﬂ<

show that sin (@— ) = ;gg

4 12 T /i1
If sinax=75 and sinﬁ:ﬁ where 5 <a<7m and‘i<b’<mFind

i) sin(a+p) ii) cos(a+ P iii) tan (@+ f)

iv) sin(a—f) v) cos(o— B vi) tan (@ — f).

In which quadrants do the terminal sides of the angles of measures (@ + ) and
(a— P lie? -

Find sin (o + ) and cos (@ + f), given that

i) tana= %, cos B = % and neither the terminal side of the angle of
measure @ nor that of Bis in the I quadrant.

i) tan a=- -1-82 and sin ff = — ;—5 and neither the terminal side of the
angle of measure 0. nor that of fis in the IV quadrant. i

cos 8° —sin 8°

- o
cos 8° +sin8° tan 37°.

Prove that:
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12. Ifa, B 7 are the angles of a triangle ABC, show that

cot'g-i- cotg+ cot% = coty cotécot z
13. If a+ B+ y=180°, show that

cot axcot B+ cot Bcot ¥+ cot ycot & = 1 ;
14.  Express the following in the form r sin-( + ¢) or r sin(6 - ¢),where . _

terminal sides of the angles of measures 6 and ¢ are in the first quadrant:

i) 12 sin O+ 5 cos @ il) 3sin @—=4 cos @ iii) sin 6—00318

iv) S5sin@-4cosh - v) sin 6 + cos 6. vi) 3 sin 8- 5 cos 6

10.5 Double angle Identities

We have discovered the following results:

sin(a+ f) = sin acos B+ cos asin B
cos (@+ ) = cosacos f—sin asin 8

tan o + tan f3

and tan(a+pf) = 1= Gncwnp

We can use them to obtain the double angle identities as follows:
i) Put B=a in sin(a+ B) = sin acos B+ cos o sin B

sin (@+ @) = sin @ cos @+ Cos Q/sin O

Hence <
ii): Put B=0 in cos(a+ f)=cos acos B—sin asin B
cos(@+ @) = cos @ cos @ — sin @ sin &
Hence  [NRARANG]
cos2a= cos® a—sin*a
cos 2= cos® a— (1 —cos® @) (- sin* @=1-cos’ @)
= cos’a—1+cos’ &

cos 2 = cos’ @ — sin® &
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(o~ cos’ a=1-sin’ @)

cos 2a = (1 —sin® @) — sin” &

tana+tang

iii) Put B=ain tan(a+f) = 1 - tan ortan B

tan @+ tan @
tan(@+0) = 70 an

10.6 Half angle Identities
The formulas proved above can also be written in the form of half angle
identities, in the following way:

1+cosa

o (1
)15 SRECos a=2co*2—1 =>c052§ = 2

ii) -cosa=1-2 sin2§

10.7 Triple angle Identities
i) sin3e = 3sina—4sin’a
cos 3a = 4 cos® a@—3 cos &
iii) tan3a = 3ma"tin3a
1-3tan”

ii)
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Proof:
1) sin3a = sin (2a+ )
= sin2acos &+ cos 2¢sin
= 2sin acos acos @+ (1 —2 sin® @) sin &
= 2sin ocos’ o+ sin & — 2 sin’ &
= 2sin ol —sin’ @) + sin @— 2 sin’ @
= ZSlna ZSm a+sma 2sm o
R P st

il) cos3a= cos (2a+ a)

= cos 2 cos &~ sin 2¢sin (04

= (2(:032 a—1)cos ox—2 sin @cos @sin &
2 cos® @ — cos o — 2 sin® @t cos &

= 2cos’ a@—cos a—2(1 — cos’ @) cos &

= 2cos’ @—cos @—2 cos &+ 2 cos’ &

cos3a= 4cos’ @—3cos @
i) tan 3 = tan 2o+ Q)

tan 2a + tan &
= 1-tan2atan o

2tan o

S i o v tan o~ tan”
- 2 tan o = l-tan’a-2tan’ @

LR

sin A + sin 2A
.Examplel. Prove that 1+cosA+cos24 = and

n _ _SinA+2sinAcosA _ SinA(1 +2cosA)
Solution: LH.S. = 1+cosA+ZcoszA—1 = oA ¥ 2cos A)
sin A
= COSA = t.aIlA = RoH-S.
sin A + sin 24
Hen 1+cosA+cosZA tan A.

-
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Example 2: Show that

: _ 2 tan 0 . 1 —tan® @
i) snn26_c1+mze 11)cos26=m

2sinf@cos @  2sin Acos O

Solution: i)sin26 = 2sinfcos @ = 1 o B TR o I
2 sin @cos 6 sin 6
cos*0 . cos 6
= cost@+sin’®  cos’@ sin’@
cos’ cos’ 6 * cos2 0
SOV e 2 tan 6
020 = T, ao:

cos’ @—sin’@ cos’ —sin® @

. e )
ii) cos260 = cos’@—sin’ 0 = 1 S Py
cos’0—sin’@ cos’@ sin’ @

cos’ 8 cos’ @ cos’ 0
cos’ @+sin” @ ~ cos’ @ sin’ @
cos’ @ cos? 8% cos?

Example 3: Reduce cos® 0to an expression involving only function of multiples of
6, raised to the first power. :
Solution: We know that:

1 26
14+cos20 = cos’@ = %’

2 cos’ 6

1 20
cos = (c052 9)2 = [—1%5—]2

1 + 2 cos 20+ cos* 20
= 2

(=

[1+2 cos 20+ cos® 26]

I
e |

b [1 + 2 cos 29+1_-_+_c§9§_5§]

4
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= 2[2+4co3329+1+cos46]

= %[3+4cos 20+ cos4é]

1.

Mo 2 12
1) sin@ =—
13

8‘
10.
12,

14.

15.

Find the values of sin 2¢, cos 2a and tan 2a, when:

s 3 I
ii) cosa =§, where 0 <_q_<5
Prove the following identities: -
sin 2«
cotax—tan @ = 2 cot 2« e = AN O
1 +cos2a
1-cosa a cos 0 —sin
——ra—— i i 5 — . = sec 20— tan 2
sin & 2 COsS &+ sin
a a

cosec 0@ + 2 cosec 29
sec 6

A
m.m_
B'|B
RIK
Il
(7]
1 B
R
+
()
&
R I
~3
mlq:

2 sin @sin 20

1 +tan atan 2 = sec 2 9. = tan 26tan 6
cos 8+ cos 360
sin 360 cos 36 cos 30 sin 36
sin@ cos@ 11. o0 mor. 020
tan2+cot—9
2 2 i 36 -

7 g = Se¢ (7] 13. S:;:’g +c:isn ok 2 cot 260

cots —tan>

Reduce sin* 6 to an expression involving only function of multiples of 6,
raised to the first power. "

Find the values of sin 8 and cos 8 without using table or calculator, when 8 is
i) 18 i) 36° i) ~ 54° iv) 72°

1

Hence prove that: cos 36° cos 72° cos 108° cos 144° = 16




Hint: Let 6 = 18°
560 = 90°
B6+20) = 90°
30 = 90°-20
sin 36 =
etc.

sin(90° - 26)

Chapter 10: Trigonometric Identities -y I
0

Let =365
5 = 180° |
36+20 = 180° [
30 = 180°-26 |
sin 3@ = sin(180° - 26) i

etc.

10.8. Sum, Difference and Product of Sines and Cosines

We know that:
sin(@+pf) = sinacosf +cos asinf ()
sin(@d—f) = sinacosf —cosasinff R (11),
cos (a+ f) = cos acosf —sin asin ff (iii)
cos (x—fB) = cos acos B +sin asin (iv)
Adding (i) and (ii) we get
sin(e+ B) + sin(@— ) = 2sin acos f v)
Subtracting (ii) from (i) we get
sin(a+ ) —sin(@— f) = 2cos asinf ; (vi)
Adding (iii) and (iv) we get
cos(a+P)+cos (@—P) = 2cos acos f (vii) I
Subtracting (iv) from (iii) we get !
cos(at+ B)—cos(@—P) = —2sinasinfB (viii) '{.

So we get four identities as:

2sin acos B = sin(a+ P) + sin(a—P)
2 cos asin § = sin(a+ f) —sin(a— p)
2cosacos B = cos(ao.+ P) + cos(ax— P)
—2sinasinf = cos(a + f) —cos(a— f)

Now putting o+ f=P and a— = Q, we get -
o= P—;Q and B =

P-Q
2

sin P +sin Q= 2sin

P+ Q¥ P=0
2 COSs 2
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Jo—
sin P—sin Q = 2cosP;Qsin ZQ
p=
cosP+cosQ = 2cosP;Qcos 2Q
3 P_
| cosP—cosQ = -23inP—;Qsin 2Q

Example 1: Express 2 sin 76 cos 30 as a sum or difference.
Solution: 2 sin 768 cos 36 = sin(70 + 36) + sin(76—36)

= sin 1060 + sin 46
Example 2: Prove without using tables / calculator, that

sin 19° cos 11° + sin 71° sin 11° =%
Solution: L.HS. = sin19°cos 11°+sin71°sin 11°

%[2 sin 19° cos 11° + 2 sin 71° sin 11°]

= %[sin 30° + sin 8° — cos 82° + cos 60°]
> % [% + sin 8° = cos(90° — 8°) + %]
? l[l
=5} %)
- l[l .!.]
= DD
2l
2
= RHS.

N =

Hence sin 19° cos 11° + sin 71° sin 11° =

% [{sin(19°+11°)+sin(19°-11°) }—{cos(71°+11°)—cos(71°-11°)}]

+ sin 8%—sin 8° + %] (° cos 82° = cos(90° — 8°) = sin 8°)
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Example 3: Express sin 5x + sin 7x as a product. : ':

5x—17
Solution: sinSx+sin7x = 2sin S.r; L COos = 2 - 2 sin 6x cos(- x)

= 2 sin 6x cos x (. cos(— 6) =cos 6)

Example 4: Express cos A + cos 3A + cos 5A + cos 7A as a product.
Solution: cos A + cos 34 + cos 5A + cos 7A ‘
= (cos 3A + cos A) + (cos 7A + cos 5A) ' ' i

3A+A 3A-A TA + A TA = 5A
=2 cos 5 COST 5 + 2 cos 5 cos 25

=2 cos 2A cos A + 2 cos 6A cos A
=2 cos A(cos 6A + cos 2A) °

6A + 2A 6A—2A
=2 cos Al 2 cos ) cos — 5

=2cos A(2 cos 4A cos 24) = 4 cos A cos 24 os 4A.

Example 5: Show that cos 20° cos 40° cos 80° =%

Solution: L.H.S. cos 20° cos 40° cos 80°

= % (4 cos 20° cos 40° cos 80°)
= % [(2 cos 40° cos 20°) . 2 cos 80°]
= 41 [(cos 60° + cos 20°) . 2 cos 80°]

= %[@' + COS 20"]. 2 cos 80°:|

= % (cos 80° + 2 cos 80° cos 20°)

%

MW

= i(cos 80° + cos 100° + cos 60°)
. [cos 80° + cos(180° — 80°) + cos 60°]

4
1
4

[CCIS 80° — COS 80° + %) : : e
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@R

4[2J= 8 = R.H.S.
Sl
_8'

Hence cos 20° cos 40° cos 80°

1. Express the following products as sums or differences:
i) 2sin368cos 8 i) 2cosS50sin 36
iii) sin 56cos 26 iv) 2sin70sin 26
V) cos(x+y)sin(x—y) vi) cos(2x + 30°) cos(2x — 30°)
vii) sin 12° sin 46° .viii) sin(x + 45°) sin(x — 45°)
2. Express the following sums or differences as products:
i) sin560+sin 360 ii) sin 80—sin 46
iii) cos 68+ cos 36 : iv) cos 76— cos 0
v) cos 12° + cos 48° vi) sin (x + 30°) + sin(x — 30°)
3. Prove the following identities:
O T
... Sin @—sin o— o+
ey B
4. Prove that:

i)  cos 20° + cos 100° + cos 140° = O

T
i1) sin(g— B)Sin(z+ 9) = %cos 260
sin 0+ sin 30 + sin 50 + sin 70

cos 0+ cos 30+ cos 50+ cos 70 tan 40
5. jP_rov'ethat:
""_:""i) cos 20° cos 40° cos 60° cos 80° = Tlg
e A e )
ii) smgsm 9 511138111 9 =16
i) sin 10° sin 30° sin 50° sin 70° = ilg



11.1 Introduction

Let us first find domains and ranges of trigonometric functions before drawing.

their graphs.

11.1.1 Domains and Ranges of Sine and Cosine Functions .
Y

We have already defined trigonometric

B0, 1)

functions sin 6, cos 6, tan 6, csc 6, sec 6 and : A
- b <5
- '

cot 6. We know that if P(x, y) is any point on EE) M faa,o

unit circle with center at the origin O such that ot
| Figure11.1 v

ZXOP = 01is standard position, then

cos 8 = x and sinf@ =y

= for any real number @ there is one and only one value of each x and y
i.e., of each cos @ and sin 6.

Hence sin 6 and cos 8 are the functions of 6 and their domain is 7%, a set of
real numbers,

Since P(x, y) is a point on the unit circle with center at the origin O.
-1<x<1 and -1<ysl

= -1<cosf <1 and -1 <sinf < |

Thus the range of both the sine and cosine functions is [-1, 1].

11.1.2 Domains and Ranges of Tangent and Cotangent Functions
From figure 11.1

i) tane=f 20

_,
= terminal side OP should not coincide With O or OY" (i.e., Y—axis)

- -

Trigonometric Functions

T e ————
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B g & gdE ST
=3 = 2'i2‘i2""

n
— (e (2n+l)§. where ne Z

T
Domain of tangent function= 78, — { x|l x=(2n + l)'i, ne Z}

and Range of tangent function = 7R, = set of real numbers.
ii) From figure 11.1

X
cot 6= "; : y#0

__)
terminal side OP should not coincide with OX or OX’ (i.e., X—axis)
A Ot 2t ..

@ # nn, wherene Z

[/ |

Domain of cotangent function = 7R — {xlx=nn, ne Z}
and Range of cotangent function = 7R = set of real numbers.

11.1.3 Domain and Range of Secant Function
- From figure 11.1

1 _
sec 0= % . x#0

.—)
= terminal side OP should not coincide with OY or OY” (i.e., Y—axis)

T 3m 5m
= 9:#5,:1:2.:1:2,...

n
= 06=# (2n+1)§, where ne Z

Domain of secant function= 78 — { x| x=(2n + 1)%, ne Z}
As sec 0 attains all real values except those between —1 and 1
Range of secant function= 78 — {x| —1<x<1}

11.1.4 Domain and Range of Cosecant Function
= From figure 11.1

1
2 csc O = =
c y S y#0

L

' - -
=  terminal side OP should not coincide with OX or OX” (i.e; X-axis)




= 10#= 0, 52T

= 0 # nm, wherene Z
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»  Domain of cosecant function= 7R = {xlx=nn, ne Z}

As csc 0 attains all values except those between —1 and 1

Range of cosecant function

R —-{xl-1<x<1}

The following table summarizes the domains and ranges of the trigonometric

functions:
Function Domain Range

y=sinx —o< X <+o0 —-1<sy<1

"':C()S X —co L X <+ o0 _l S_‘ S ]
(2n+)m S =

y=tanx —m(x(-{-m’x;&—z_‘ <y<+

y=cotx —co<X<+0o, X #NT. e Z | Seasy sifie
(2n+1)w

y=secx —o<x<+oo,X#E— 5 ,N€EZ yzlory<-l

¥ = COsec x —0< x<+o0, X # N, neZ | yzlory<-Il

11.2 Period of Trigonometric Functions

All the six trigonometric functions repeat their values for each increase or
decrease of 2w in 8 i.e., the values of trigonometric functions for € and 6 * 2nm,
where 8 € 7R and n € Z, are the same. This behaviour of trigonometric functions is

called periodicity.

Period of a trigonometric function is the smallest +ve number which, when
added to the original circular measure of the angle, gives the same value of the

function.

Let us now discover the periods of the trigonometric functions.
Theorem 11.1: Sine is a periodic function and its period is 2.

Proof: Suppose p is the period of sine function such that

sin (6 + p)

= sin@

Now put 6= 0, we have

sin (0 + p)

= sin0

forall 8¢ /R

|

inmemT
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Theorem 11.2: Tangent is a periodic function and its period is 7.

A Textbook of Algebra and Trigonometry

= sinp= 0

= p = 0,+m+2n,+37,....

if p =m, then from (i)
sin(@+m) = siné@ (not true)
sin(@+m) = -—sin@
7t is not the period of sin 6

if p=2mn, then from (i)
sin (6+ 2m) = sin 6, which is true

As 2mis the smallest +ve real number for which
sin (0+2n) = sin @

2m is the period of sin 6.

Proof: Suppose p is the period of tangent function such that

[* 5

© 1il) 2mis the period of sec 6

tan(6+p) = tané@ forall e /K
Now put 6=0, we have
tan(0+p) = tan0
Sstanp==0
D= 0,10 210, 3Tt
if p=m, then from (1)
tan(@+ ) = tan 6, whichistrue
As T is the smallest +ve number for which
tan(6+m) = tan@

msthepenodoftan&

T T ! R b e e pnt

- Note: By adoptmg m& prooedure used in' ﬂndmg the penods of sine and

tangent, we can prove that

S = S AT R I e e A LD W-_ A

i)  2mis the period of cos 6

.

Oz

ii) 2m is the period of csc 6
iv) T is the period of cot 6.

(i1)

e
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5 A o X
Example 1: Find the periods of: - i) sin2x ii) tan 3

Solution: i) We know that the period of sine is 27
sin(2x+2m) = sin2x = sin2(x+ ) = sin 2x
It means that the value of sin 2x repeats when x is increased by .
Hence = is the period of sin 2x.

ii)  We know that the period of tangent is 7t

X -

It means that the value of tan % repeats when x is increased by 3.

= tan% (x+3m) = tan'3£

W |*

Hence the period of tan‘g' is 3.

S . Exercise 11 1
Fmd the penods of the following functlons

1. sin 3x 2. cos2x 3. tandx 4. cot% &% sin% i

f
6. coseci 7. sing—c 8. cos% 9, tan% 10. cot 8x f :
11. sec 9x 12.cosec 10x. - 13.3sinx 14. 2cosx 15.3 cos% f-

11.3 Values of Trigonometric Functions
We know the values of trigonometric functions for angles of measure

0°, 30°, 45°, 60°, and 90°. We have also established the following identities:

e ——————

sin(=0) = -sin@ cos(-06) = cosB tan(—0) = —tané
sin(k—0)= sinf@ cos(m—6O) = -cos@ tan(r— 6)= —tan O
sin(m+60)= —sin@ cos(m+6) = -cos ) tan(m+ @)= 1an 6
sinr—0)= -sin@ cos(2n-6) = cos€@ tan(2n-6) = —tan @

By using the above identities, we can easily find the values of trigonometric
functions of the angles of the following measures: ;
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—30°, — 45°, — 60°, — 90°

+120°, £ 135°, + 150°, + 180°

SRS +210°, +225°, +240°, +270°
+300°, + 315°, + 330°, + 360°.

sy 11.4 Graphs of Trigonometric Functions
i We shall now learn the method of drawing the graphs of all the six
trigonometric functions. These graphs are used very often in calculus and social
sciences. For graphing the linear equations of the form:
ax+by+c = 0 N ()]
Cax+by+c = 0 : (ii)
e We have been using the following procedure. '
F i i)  tables of the ordered pairs are constructed from the given equations,
o L ii) the points corresponding to these ordered pairs are plotted/located,
T iii) the points, representing them are joined by line segments.
JaBRE Exactly the same procedure is adopted to draw the graphs of the trigonometric
' ) -‘.funcuons except for joining the points by the line scgmcnts
~ Forthis purpose, ;
i)  table of ordered pairs (x, y) is constructed, when x is the measure of the
cangle and y is the value of the trigonometric ratio for the angle of
measure x; _ :
“* 'ii)-" The measures of the angles are taken along the X-axis;
ni)  The values qf the trigonometric functions are taken along the Y-axis;

lV) The pomts oorrespondmg to the ordered pan‘s are plotted on the graph
paper, .

.‘_..;"

*.ﬁmnsm v). -{Hmse pmnts are ]omed Wlth the help of smooth curves.

Ct‘.‘.‘



11.5 Graphofy =sinx from— 2’”" 27‘ .
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We know that the period of sine function is 27 so, we will first draw the graph

for the interval from 0° to 360° i.e., from 0 to 27

To graph the sine function, first, recall that —1 <sinx<1 forall xe R

i.e., the range of the sine function is [-1, 1], so the graph will be between the
horizontal lines y=+1 and y=-1

The table of the  ordered pairs satlsfymg y =;sin x is as follows:

or | 5x | . (7= | 4n | 3% | 5n | 1in

| n | =& | 8% | 5 _
S il b i e P e
* | or | or | or | or [ or | or | or.| or | or [ or | or | or | or
0° 30° | 60° |- 90° | 120° | 150°-( 180° | 210° 24_0“ 270° { 300° | 330° | 3g0°
Sin x )

0.| 05 087 | 1 [o087 | 05| 0 |-05(-087| -1 lL087, 05| 0

To draw the graph:

¢ X 1 side of small square on the x-axis = 10°
i)  Take a convenient scale {1 side of big square on the y-axis = i unit :
ii) Draw the coordinate axes. %
iii)  Plot the points correspondmg to the ordered palrs in the table above
-1.e., (0, 0), (30°, 0.5), (60° 0.87) and 5o on;
(iv) Join the points with the help of a smooth curve as shown so to get the
graph of y = sin x from 0 to 360° i.e., from 0to 2.

Graph of y =sinx from 0° to 360°

e o ey e e e o e RS

o
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In a similar way, we can draw the graph for the interval from 0° to —360°.
This will complete the graph of y = sin x from —360° to 360° i.e. from —27 to 2,
as shown below:

Yoeonk
380 .330 .300 -27C 2

Graph of y = sin x from — 360° to 360°
The graph in the interval [0, 2x] is called a cycle. Since the period of sine

function is 2x, so the sine graph can be extended on both sides of x-axis through
every interval of 2r (360°) as shown below:

---------- > yal

n Tri2

11.6 Graph of y = cos x from — 2 to 21

We know that the period of cosine function is 27 so, we will first draw the
graph for the interval from 0° to 360° i.e., from O to 27

To graph the cosine function, first, recall that -1 <sinx<1 forall xe 7R

1.e., the range of the cosine function is [-1, 1], so the graph will be between
the horizontal lines y=+1 and y=-I

The table of the ordered pairs satisfying y = cos x is as follows:

2t [5z | = [ Iz |4z |3z | 5z [z | 2=

D L | Ly
6 3 6 B 3 2 3 6
OrENIRNOIER S UL I ot st orit v or [ or | o b or for lor | oor | or

0° | 30° | 60° | 90° | 120° | 150° | 180° | 210° | 240° | 270° | 300° | 330° | 360°

LI |H
r A

osx| 1 [087| 05| 0 |-05[-087| —1 |087| 05| O |05 [087 | 1
** The graph of y = cos x from 0° to 360° is given below: '




ceeep y=1

L L

L ) | I L] )
120" 150° 180" 210° 240%270° 300" 330" 360"

Graph of y = cos x from 0° to 360°

In a similar way, we can draw the graph for the interval from 0° to —360°.
This will complete the graph of y = cos x from —360° to 360° i.e. from —27 to 27,

as shown below:

Graph of y = cos x from — 360° to 360°
As in the case of sine graph, the cosine graph is also extended on both sides of
x-axis through an interval of 2r as shown above:

Graph of y = sin x from —4 7 to 4 ng
11.7 Graphofy=tanx from—- tTom" '.

We know that tan (=x) = — tan x and tan (T — x) = — tan x, so the values of
tan x for x = 0°, 30°, 45°, 60° can help us in making the table.

Also we know that tan x is undefined at x = £ 90°, when

. n ' : Ay
1) xapproaches g from leftie., x — SR 0, tan x increases indefinitely in 1 Quard.

Chapter 11: Fundamentals of Trigonometry I
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s K ol U : ;
i)  xapproaches7 fromrightie.,x— 7+ 0, tan x increases indefinitely in IV Quard.

U : T . ; 2
iii) x approaches — from lefti.e., x — — > — 0, tan x increases indefinitely in IT Quard.

. I Sy T S o
iv) xapproaches =5 fromrightie. x— — 7 +0, tan x increases indefinitely in III Quard.

- We know that the period of tangent is 7t , so we. shall first draw the graph for
the interval from - to 7 i.e., from —180° to 180°

The table of ordered pairs satisfying y = tan x is given below:
Skl &) x x| x| = E|x x |x |28 | 5%
el e o R0ls 3 R0l =il [0 76 <13 20249 3 | o i [wE
X or

—180° or or or or or or or| or or or or or or or

=150°/-120°| -90°0 | ~90+0| —60° | —30° | | 30° | 60° |90°-0[90°40 120° | 150° | 180°

Tanx| O [058 | 173 | 4oo | — |178(-058 0 [ 058 | 178 4o | —o [-173 2058 O

Graph of y = tan x from - 180° to 180°
A + A

>l
- T T

L)
-180" -150” -120°

v

1
30" 60" 90" 120° 150/ 180

O T

We know that the period of the tangent function is 7. The graph is extended
on both sides of x-axis through an interval of 7 in the same pattern and so we obtain
the graph of y = tan x from —360° to 360° as shown below:
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A 4 1 A 4
. ) "
: : : ‘
L] L] L] ] |
. L] n L] i
" ' (] (] f
" ' () L {
] ] (] ] !
1 L
. : ’ . ’
: : 2 - : ' :
: L 1.1 : ' i
L] L] 1 L]
Ll L} 1 1
[ [ L] 1
: ' L& : '
‘ B : '
L] [ L] L
- . . H . P
S e} o T [ oo pommp— T T R . | P, ey e S Lt
-360" +330"-300" - 270" .240° - 2197~ 180° -150° -120° 40° -60" .3 w' e° 92' 120° 1507°180° 210" 240° :fn' 100" 3397 160"
. i . ' H
L] L] L] L]
L
F , =1 - ' i
L L] L} L]
" . .
[} (] : '
. L -1.7 49 ' .
- ! e : :
L] L] L] L]
’ M ]
: | ; :
L] . L} 1
L] L L] L]
n L] . .
L L L] .
L] . L L]
. 1] [} L]
L] . L} Ll
. L L] L]
v v v v

Graph of y = tan x from — 360° to 360°

11.8 Graphofy = cotx From 27 ton

We know that cot (—x) = — cot x and cot (n—x) = — cot x, so the values of
cot x for x=0°, 30° 45°, 60° 90° can help us in making the table.

The period of the cotangent function is also 7z. So its graph is drawn in a
similar way of tangent graph using the table given below for the interval from —180°

to 180°.

St | 2n 1:‘ T 4 T b T |m b 2n | 5w

| T T R T (e [0 e sl 2 ndi 2iel o | e
or or or or or or or or or or or or or or 5
-180°|-150°|-120°|-90°-0|-90+0| —60° | —30° 30° | 60° (90°-0{90°+0| 120° | 150° | 180° {9
cotX| +o | 1.73 | 058 | 4oo | —o |-0.58|—1.73| #oo | 1.73 | 058 | 400 | —eo |-0.58|-1.73| =o '
]
|
14

e
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e i s a0 e e g

o
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4 \ 4
Graph of y = cot x from — 130‘*&) 180° 3
We know that the period of the cotangent function is 7.- The graph is extended on
both sides of x-axis through an interval of 7 in the same pattern and so we obtain the
graph of y = cot x from —360° to 360° as shown below
i Y

s 4 ; A 4
] 2 - :
. 1.7
o} Al . ]

v v v v

v

Graph of y = cot x from — 360° to 360°
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11.9 Graph of y = sec x from —27 to 27
We know that: sec (~x) =secx - and sec (T —x)=—secx,

So the values of sec x for x = 0°, 30°, 45°, 60°, can help us in making the
following table of the ordered pairs for drawing the graph of y = sec x for the interval
0° to 360°:

r 2r

x | o | or [ or | or | or | o | or [ O | or [or | or [or [or ! or| O
0 | 300 [ 60° | 9009040 | 120° | 150° | 180° | 210° | 240° |270-0]270+0| 3007 {330 | 360°

2r | 5S¢ It | 4x [3n |3x [ 5& | 5%
£)F 5 |'x |6 |3 @ Y2t 3 |6

mia

T |k |
0% |3 (270

Secx| 1 [115] 2 o | =0 | =2 |-1145] =1 [=115[ =2 [ —oo [ 4eo [ 2 | 115 | 1

Since the period of sec x is also 2m, so we have the following graph of
y = sec x from — 360° to 360° i.e., from —27 to 27

' [} [ (] 1
L] L Al L] '
] . L) L] )
(] ] L] 1 {
[ L] [ N i1
] . . L] 1
' ' ' [ \
L] ] ] [] i3
1 L] L] L] |
' ' ' ] 8
L} L] . L] .
' ' i ; i
] ] 0 [ 1
. . . L) 1
. ' ' " f '
1 ' ' I
' ) (] [ &
] e P i B Eessssssssmsannsabonnnnnd p y= | |..
' ' | ' ' it
L] L] 1 e 1 4i =
' [ ' " i
L] 1 L) ] '.. -
' ' 0 . } B
"l i i P 1
- T T T T T T T Tt 1] T T 0 T T 1 T T T T T T T T ™ 1B
3617 +330".300" -270° 240" -210".180° -150" -120" 90 60" -30 j0° 0" oy 120" 150" 180" 210" 240° 280° 300° 330" 360 i
' " . ' H
' [ . h
ermcnccacaas T = Fesssamsdecacncns R fesmcaaaa » y=-l [#
[ [ —I ' g
(] ] (] ] l'l
L) L] L) . 4
" [ [ is
] [} [} [l E"
" [ (] ' i
' [ ' (] |
L] L . 1. i
' [] (] ] 1
M (] L] L H l
L] . . *
L] L] L) L] '§
] ] [ ' 1
¥ [} (] ]
[} . ] { i
' . . . i
N L] (] " )
v

Graph of y = secx from — 360° to 360°
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11.10 Graph of y = csc x from -27 to 27

Weknow that: csc(—~x) = —cscx and csc(m—-x)= cscx
So the values of csc x for x = 0°, 30°, 45°, 60°, can help us in making the
following table of the ordered pairs for drawing the graph of y = csc x for the interval

0° to 360°:
T n T 2n 3n n 4n 3n Sn 4r
xR e RNl Sl w5 gm0 M T [T | T | T | T |2
or or or or or or or or or or or or or or
0+0 | 30° | 60° | 90° | 120° | 150 |180-0|180+0| 210 | 240° | 270° | 300° | 330° | 360°
esex| « | 2 |15 1 [115] 2 | e | —= | -2 [-115| -1 |-115] 2 | —o

Since the period of csc x is also 27, so we have the following graph of

L 4 A 4 4
L] L] L] " L]
. L) L] .
. L) L] L]
L) " L] L]
. " . L]
. . . L]
. L] . L]
L] . . .
. . '
. . '
. L] . .
. . .
. L] L] L]
. . L] .
. L] L] .
. L] Ll .
L] . L] .
- - .:. .............. .: ......................... : ................. : =P y=1
L] L] .
L] L] .
L] L] .
. .
< . 3 »
- T T T T T T T T T T T T T T T T T L] T T T T T T .
-_‘}II ".3307.300°.270" 2407 210 -IElil'u 150° 120" -90° 60" .30 |0 30" 60° 90" 1207 150" 18" 210" 240" 270" 300" 330" 30
. L) L} .
" L] L] L]
L) L] L] L]
- desssssspmgesssnsslennnssnnnnnnnnnnm e S - ‘m -
‘ L] L] L} L] ’ " 1
L) L] [ ] 1
(] ] ' [
L] L] L] L)
L] L] L] L]
1 L) L] ]
1 ] [ '
. L] L] L]
L] L] L] '
L] L] 1] L
n L] L L]
L] L] 1 L]
L) L] L} L]
L] L) L Ll
. L) L) L]
0 ' ' (]
0 " (0 ]
L] L] 1 L]
v v v v v

y = csc x from — 360° to 360° i.e., from -2z to 21:

Graph of y = csc x from — 360° to 360°
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Draw the graph

=

against each:

i) y=-sinx

ii). seyti=¢2cosx;
iii) y = tan2x,
iv) y = tanx

o
V) y = siny,

g X
vi) Yy cos 5

On the same axes and to the same scale, draw the graphs of the following

of each of th

Y o

¢ following

x€ [-2m, Zi,)

X€E

Xe

XE

XE

XE

functions for their complete period:

i) y=sinx and y = sin2x

....
=

—

<
Il

Solve graphically:
i) sinx=cosx,

i) sinx=x

cosx and y = cos 2x

xe [0, 7]

xe [0, ]

Teks

B

[0, 2m]
[-m. ]

[-2r, 27]

[0, 2m]

[-x, 7]

functions for the intervals mentioned

e . -

AR

R

NN S e




1 2 Application of

Trigonometry .+ ¢

. ImTrpadonooon

— -

= Bne
= TEnTic hes

six important elements; three angles and three sides. In a
Tmmmoe <E0 the maasures of the three angles are usually denoted by @, 8, yand the
TmessToes O e thres sides opposite to them are denoted by a, b, ¢ respectively.

I zmy thrss out of these six elements, out of which atleast one side, are given,
==c T=memme thres elements can be determined. This process of finding the unknown
=s==o= 1= calied the solution of the triangle.

Wz have calculated the values of the trigonometric functions of the angles
m=asumme 07, 30°, 45°, 60° and 90°. But in a triangle, the angles are not necessarily
in=sz few measures. So, in the solution of triangles, we may have to solve

probizms mvolving angles of measures other than these. In such cases, we shall have

1o consult natural sin/cos/tan tables or we may use [sin], [cos], [tan] keys on the
caicalator. '

Tables/calculator will also be used for finding the measures of the angles
when value of trigonometric ratios are given e.g. to find 6 when sin 6= x.

12.2 Tables of Trigonometric Ratios

Mathematicians have constructed tables giving the values of the trigonometric
ratios of large number of angles between 0° and 90°. These are called tables of natural
sines, cosines, tangents etc. In four-figure tables, the interval is 6 minutes and

difference corresponding to 1, 2, 3, 4, 5 minutes arc given in the differepce columns.
The following examples will illustrate how to consult these tables.

Example 1: Find the value of
i) sin 38° 24’ ii) sin 38° 28’ iii) tan 65° 30’
Solution:

In the first column on the left hand side headed by degrees (in the
Natural Sine table) we read the number 38°. Looking along the row of 38° till the
minute column number 24 is reached, we get the number 0.6211.

sin 38°24° = 0.6211

e e
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‘To find sin 38° 28’, we first find sin 38° 24’, and then see the right hand -
column headed by mean differences. Running down the column under 4 till
the row of 38° is reached, we find 9 as the difference for 4. Adding 9 to

6211, we get 6220.
sin 38° 28 0 6220

Note: 1.

differences are subtracted

iii)  Turning to the tables of Natural Tangents read the number 65" in the first
column on the left hand side headed by degrees. Looking along the row of 65°
till the minute column under 30’ is reached, we get the number 1943. The
integral part of the figure just next to 65° in the horizontal line is 2.

tan 65° 30" = 2.1943
Example 2: If sin x = 0.5100, find x.

Solution: In the tables of Natural Sines, we get the number (nearest to 5100) 5090
which lies at the intersection of the row beginning with 30° and the column headed by
36’. The difference between 5100 and 5090 is 10 which occurs in the row of 30°
under the mean difference column headed by 4. So, we add 4’ to 30° 36’ and get

sin”' (0.5100) = 30° 40’
30° 40’

Exercise 12.1

Hence =

1. Find the values of: ;
cos 36° 20’ 1i1)

1)  sin 53° 40’ ii) tan 19° 30°
iv) cot33°50° v) cos42°38 vi) tan25°34’
vii) sin 18° 31 viii) cos 52° 13’ ix) cot89°9°
2. Find 6,if: = b
0.5791 i) cod@ = 09316

i) sinf =

A SES wal e E  LTan =
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11) _ cos 0 0.5257 - iv) tan @
V) tan@ = 21943 vi) sin @

1.705
0.5186

12.3 Solution of Right Angled Triangles

In order to solve aright angled triangle, we have to find:
1)  the measures of two acute angles
and 1i) the lengths of the three sides.
We know that a triconometric ratio of an acute angle of a right triangle

involves 3 quantities “lengths of two sides and measure of an angle”. Thus if two out
fof these three quantities are known, we can find the third quantity.

Let us consider the following two cases in solving a righla.ngled triangle:
CASE I: When Measures of Two Sides are Given
Example 1: Solve the right angled triangle ABC, in which 5=30.8,c=37.2 andy=90°.
Solution: FFrom the figure,
_ 5
' cos a=§=%§‘ =0.8280
= @=cos™ 0.8280=34%

7=90°

A

b=30.8 C
Y = 90?7 = B=90°-0 = 90°-34°6, = 55° 54.
ar sin o
c
= a = csino=37.2sin34°6,
= 37.2(0.5606)
— R
= a = 209

: Hence a = 209 a = 34° and [3 = 55° 541
CASE II: When M‘easures of One Side and On¢-Angle are Given
Example 2: Solve the right angled triangle, in which
o = 58°13', b = 125.7 and y = 90°
Solution: -+ y=90°, o = 58213’ .. B = 90°—58° 13’ = 31°47’
From the figure,

et




= tan 58° 13’

2 oI

= (125.7) tan 58° 13’
= 125.7 (1.6139)

= 202.865

=8202.9

58° 13" 7=90¢
2 b=125.1 C

oIR8

Again = sin58° 13’

202.9
0.8500

4, ¢ = 2387

Hence: 'a = 2029, B = 31°477 and c¢ = 2387

U
il

Exerclse 122505 s

i 1 Fmd the unknown angles and sides of the followmg mangles

VNN

@ (i1) (iii) (iv) (v1)
Solve the right triangle ABC, in which y=90°

2. a=37° 20", a=243 3. a=62°40, b= 1796
4. a:=528 B b=5.74 5. b=684 |, c= 962
6. a=5429 c =6294 7. B=50°10, c= 0.832

12 4 (a) Heights And Dlstances

One of the chief advantages of trigonometry lies in findmg heights and
distances of inaccessible objects*;

In order to solve such problems the following procedure is adopted

1)  Construct a clear labelled diagram, showing the known measurements.

2) Establish the relationships between the quantities in the diagram ta form
equations containing trigonometric ratios. {‘
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3)  Use tables or calculator to find the solution.

(b) Angles of Elevation and Depression

If OAis the horizontal ray
through the eye of the observer at point
O, and there are two objects B and C
such that B is above and C is below the

Anele of Elevation
(0] -

Angle of Depression

_.}
horizontal ray O4, then, _

C

1)  for looking 4t B above the horizontal ray. we have to raise our eye , and

ZAOB is called the Angle of Elevation.

i)  for looking at C below the horizontal ray we have to lower our eye , and

ZAOC is called the Angle of Depression.

Example 1: A string of a flyin

60". Find the hei
stretched.

Solution: Let O be the position of the observer, B be the position of the kite and O

be the horizontal ray through O.

Draw BA | OA

Wb, 200 m
Now mZ0 = 60° and OB = 200 m '

Suppo_s'c AB = x meters

—p |

g kite is 200 meters long, and its angle of elevation is
ght of the kite above the ground taking the string to be fully

60° <
o L
In A40B,
e B 1732
200 = sin 60°= 2 = 2
= x = 200(;7532) = 100(1.732)= 1732

Hence the height of the kite above the ground = 173.2 m.

Examplé 2: A surveyor stands on the top of 240 m high hill by the side of a lake. He
observes two boats at the angles of depression of measures 17° and 10°. If the boats



o e s

T

- 240m

Solution: Let T be the top of the hill TM, where the observer is stationed, A and B be
the positions of the two boats so that mZXTB = 10° and mZXTA = 17° and

T™ = 240 m.
Now, mZMAT = mZXTA = 17° (<TX| |EJ"B)
and m/MBT = m/XTB = 10° (fﬂ 'm)'
From the ﬁgufe, % = tan 17° y
> M = ol = 53087
= AM = 785m
™

and BM tan 10°

1l

™ 240
tan 10° = 0.1763 = 1361 m

. AB = BM-AM = 1361 -785 = 576 m
Hence the distance between the boats = 576 m.

= BM =

Example 3: From a point 100 m above the surface of a lake, the angle of elevation of
a peak of a cliff is found to be 15° and the angle of depression of the image of the

peak is 30°. Find the height of the peak.

X

TSN D SRR SRS

i

- i
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are in the same straight line with the foot of the hill just below the observer, find the
distance between the two boats, if they are on the same side of the hill.




“ " .Such the PL=100mj
- -From P, draw PQ L AM.
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Solution:

Let A be the top of the peak AM / T
P I5s 2

and MB be its image. Let P be the point o y
of observation and L be the point just M
below P (on the surface of the lake). L

‘Let PQ =y metres and AM = h metres.

AQ = h—-QOM = h—PL = h—100
From;hcﬁgure,

AQ h-100

AR X o BQ 100+h
tan 15° = PQ = y and tan 30°= PQ =

Yy

By division, we get

tan 15° ° h—100
tan 30° ~ h+ 100

By Componendo and Dividendo, we have
tan15°+tan30°_h—100+h+100 2h h
tan 15°—tan30° ~ A —100—Ah—100 ~ —200 ~ —100

_tan30+tanlse [0.5774 + 0.2679] 30
= tan 30° — tan 15° = 105774-02679] *

273.1179.
Hence height of the peak = 273 m. (Approximately)

12.5 Engineering and Heights and Distances

Engineers have to design the construction of roads and tunnels for which the
knowledge of heights and distance is very useful to them. Moreover, they are also
required to find the heights and distances of the out of reach objects.

Example 4: An O.P., sitting on a cliff 1900 meters' high, finds himself in the same

= h

vertical plane with an anti-air-craft gun and an ammunition depot of the enemy. He

observes that the angles of depression of the gun and the depot are 60° and 30°

- respectively. He passes this information on to the headquarters. Calculate the distance

stween the gun and the depot.




Solution: Let O be the position of the ¢
O.P., A be the point on the ground just
below him and B and C be the positions
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{

shadow of 40 m long. Find the height of the top of the flag. g

of the gun and the depot respectively. =
OA = 1900 m. &
mZBOX = 60°
and mZCOX= 30’
A
= mZABO = mZBOX = 60°, mZACO = mZCOX = 30°
In right ABAO, In right ACAO,
%: tan 60° ‘1% = tan 30". .
1900 1900 1900
=S tan 60° ~ -\ﬁ AE S tan 30 °
Now BC = AC-AB =  AC = 19003
= BC = 1900\3- 1390 = 2193.93
Reqmred distance = 2194 meters.
e Exercise 123 i
1. A vemcal pole is 8 m hngh and the length of its shadow is 6 m. What is the :
angle of elevation of the sun at that moment? _
2. A man 18 dm tall observes that the angle of elevation of the top of a tree at a
distance of 12 m from him is 32", What is the height of the tree?’
3., At the top of a cliff 80 m high, the angle of depression of a boat is 12°. How
far is the boat from the cliff?
4. A ladder leaning against a vertical wall makes an angle. of 24° with the wall.
Its foot is 5 m from the wall. Find its length.
5. A Kite flying at a height of 67.2 m is attached to a fully stretched string
inclined at an angle of 55° to the horizontal. Find the length of the string.
6. When the angle between the ground and the sun is 30° flag pole casts a - 1
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7

10.

11.

12.

13.

14.

A plane flying directly above a post 6000 m away from an anti-aircraft gun
observes the gun at an angle of depression of 27°. Find the height of the plane.

A man on the top of a 100 m high light-house is in line with two ships on the
same side of it, whose angles of depression from the man are 17° and 19°

respecting. Find the distance between the ships.

P and Q are two points in line with a tree. If the distance between P and Q be
30 m and the angles of elevation of the top of the tree at P and Q be 12° and

45° respectively, find the height of the tree.

Two men are on the opposite sides of a 100 m high tower. If the measures of

. the angles of elevation of the top of the tower are 18° and 22 ’g;specti\i"ely find

the distance between them.

A man standing 60 m away from a tower notices that the angles of elevation
of the top and the bottom of a flag staff on the top of the tower are 64° and 62°
respectively. Find the length of the flag staff.

The angle of elevation of the top of a 60 m high tower from a point A, on the
same level as the foot of the tower, is 25°. Find the angle of elevation of the

top of the tower from a point B, 20 m nearer to A from the foot of the tower.

Two buildings A and B are 100 m apart. The angle of elevation from the top of
the building A to the top of the building B is 20°. The angle of elevation from
the base of the building B to the top of the building A is 50°. Find the height of
the building B.

A window washer is working in a hotel building. An observer at a distance of
20 m from the building finds the angle of elevation of the worker to be of 30°.
The worker climbs up 12 m and the observer moves 4 m farther away from
the building. Find the new angle of elevation of the worker.

A man standing on the bank of a canal observes that the measure of the angle

of elevation of a tree on the other side of the canal, is 60°. On retreating 40
meters from the bank, he finds the measure of the angle of elevation of the

tree as 30'. Find the height of the tree and the width of the canal.
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12.6 Oblique Triangles

A triangle, which is not right, is called i i
. , ) an oblique triangle. Followin
triangles are not right, and so each one of them is oblique: :

We have learnt the methods of solving right triangles. However, in solving

oblique triangles, we have to make use of the relations between the sides a, b, ¢ and
the angle @, B, y of such triangles, which are called law of cosine, law of sines and
law of tangents. '
Let us discover these laws one by one before solving oblique triangles.
12.6.1 The Law of Cosine
In any triangle ABC, with usual notations, prove that:

Y

i) a’=b*+c*—2bccos & A
A Ve
i) b=c + a* -2cacos B o
iii) = at+ b* —2ab cos Y ¢ \
B 7 e
Origin [A(0,0) b C(b,0)

Proof: Let side AC of triangle ABC be along the positive direction of the x-axis with
vertex A at origin, then ZBAC will be in the standard position.

4B = ¢ and mZBAC = «

Coordinates of B are (¢ cos & ¢ sin o)

AC = b and point C is on the x-axis

Coordinates of C are (b, 0)

By distance formula, :
IBCI2 =(ccos &— b)* + (c sin @— 0)
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- 2 2 = D
= a® = c?cos® a+ b*—2bc cos o+ ¢ sin’ ( BC=a)
= a = c(cos o+ sin’ a)+b”—7bccosa
(i)
(ii)
(ii1)

12.6.2The Law of Sines

In any triangle ABC, with usual notations, prove that:

a b c
sino ~ sinf  siny’

A . A
a :
= ¢ i
=1 a - S04
-1 N ' Origin |A C

Proof: Let side AC. of. triangle ABC be along the positive direction of the x-axis with
vertex A at origin, then ZBAC will be in the standard position.

.
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AB = ¢ and mZBAC = «
The coordinates of the point B are (c cos @, ¢ sin @)
If the origin A is shifted to C, then ZBCX will be in the standard position,
BC = a and m/ZBCX = 180°-¥y
The coordinates of B are [a cos(180° — ), a sin(180° — )]
In both the cases, the y-coordinate of B remains the same

= asin(180-y)=csin &
asin ¥y =csin @

= R 1 . (1)
smo  siny |

In a similar way, with side AB along +ve x-axis, we can prove that:

(i)

(it ey b j
'_sixl"a"' sin'ﬂ__?

sin

a.

sing ~ sinf

From (i) and (ii), we have

This is called the law of sines.

12.6.3The Law of Tangents

rIn any triangle ABC, with usual notations, prove that:

o-p B-y
; o 5 hee G
1 = 11 =
a+b o+ b+c -
tan_zﬁ mlizu’
rYr-a
v B o'
i), o ra Y+ a
tan

Proof: We know that by the law of sines:
a b

sin o _sin B
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in o
sin 3

By componendo and dividendo,

W

=

Sl N

a+p  a-p

a=b sina-sing 2% 5 sinT5
a+b ~ sina + sinff o+ o-
p 2 sin zﬁcos 2ﬁ

(1)

= (i), (ii) and (iii) are called Law of Tangents.

. 12.6.4 Half Angle Formulas

We shall now prove some more formulas with the help of the law of cosiné,
which are called half-angle formulas:

a) The Sine of Half the Angle in Terms of the Sides
: In any triangle ABC, prove that:

el s f(s—b)(s—c) i
(i) siny = TR

B (=0 -a) \

(ii) sin 5=

ca
A=
amsm§=wﬁi%§—lJ

[ ' Proof: We know that

-where 2s=a+b+c

: L :
i : 2sm2§'= 1—cos

L [
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L bir it { b+ - a
2 sin 2 = l_____—zbc ;oS O="T 5
2bc—b*-c+d°
v 2bc
a0 d-@P+-2b) d-(b-0o
2sin"y = 2bc =~ 2b¢
N O (a+b-c)(a-b+c)
SHLE o= 4bc
L 2s—c).2(s—b)
sin® 2= dbe {va+b+c=2s}

& -~ o is the measure of
. [s=b)s=0), an angle of AABC
Hence: siny = BN A :
c o . a
' o - '2"<90° = sin5 =+ve

In a similar way, we can prove that

s_ing SRy, ; _cc)fis_'_'a)' and sing

b) The Cosine of Half the Angle in Term of the Sides
In any triangle ABC, with usual notation, prove that:

. o s(s —a)
1) COS 2=\t
ii) cosé= IS Where2s=a+b+c¢
O\ NG
e s(s —c¢)
111) COS =\ v

Proof: We know that

, 0 b+’ —d [ b2+cz—a2]
2 cos 5 = l+ch»sach=1+—*——'2bC ' CoS O =——_2bc

dbc+b2+ct-a¢ (b+co)i-a
Iz 2bc = 2bc
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b+c+a)(b+c—a)

s " 2bc
500 ¢ (@a+b+c)(b+c—a)
SOSkoid = 4bc

oSy A= s = Ty (..28=a +b+ ¢)

o is the measure of
an angle of AABC

o . o
. 5 isacute = cosy =-+ve

I _ ._g(s.-.-.(_')

.-,and cosz-_ " ab

c) The Tangent of I-Ialf the Angle in Terms of the Sides
In any triangle ABC, with usual notation, prove that:
-4 d B [ (Si=b)i(s =Ic)
Hitan o= s(s —a)

(s—¢)(s—a) [ Where2S=a+b+c
s(s —b)

e (s —a) (s =b)
7=

s(s —¢)

" ii) tan

(SIS
]

_ iii) tan

Proof: We know that;

.o (s=b)(s —c) [0 s(s —a)
siny = o and c0sH = 5o
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o (s =b)(s —¢)
g sin 2 bC
= tany = co.—,—q = )
i 2
o (s =b)s =0)
wns 5(s —a)

In a similar way, we can prove that:

B [c=o6-a
tan 5 = 525 and

12.7 Solution of Oblique Triangles
We know that a triangle can be constructed if:
i) one side and two angles are given,
or ii) two sides and their included angle are given
or iii) three sides are given.
In the same way, we can solve an oblique triangle if
i) one side and two angles are known,
or ii) two sides and their included angle are known
or iii) three sides are known.

Now we shall discover the methods of solving an oblique triangle
in each of the above cases:

12.7.1Case I: When measures of one side and two angles are given
In this case, the law of sines can be applied.
" Example 1: Solve the triangle ABC, given that
a = 35°17, B=45°13, b=421.
Solution: -+ a+fB+y = 180° _
y = 180°— (o + )= 180° —(35° 17" +45° 13") =99° 30" -

By Law of sines, we have
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a i
sina@ _ sinf
sin & 421 x sin 35° 17’ 421(0.5776)
= a = PGnp = " sina5°13 = 0.7098
a = 34258 = 343 approximately.
, (¢ & b
LhgAL siny ~ sinf
siny 421 xsin99° 30"  421(0.9863)
Gyl sinB - sind5°13° <~ 07098

= 584.99 = 585 approximately. .
Hence y=99°30°, a=343, c=585. '

N

Solve the triangle ABC, if

B=60° : 7=15° ; b=4[6
B="522 3 y=89° 35’ : a=289.35
b=125 5 ¥=53° : o =47°
c= 16.1 ; o =42° 45" ; y=74° 32’
a=353 > p=88°36 ; y=31° 54

12.7.2 Case II: When measures of two sides and their included angle are given

In this case, we can use any one of the following methods:
i)  First law of cosine and then law of sines,

or ii) . First law of tangents and then law of sines.

Example 1: Solve the triangle ABC, by using the cosine and sine laws,
giventhat b=3, c=5 and a=120°

Solution: By cosine laws,

@ = b+’ -2bccosa = 9+25-2(3)(5)cos 120°

9+25-2(3)(5)(-%)= 9+25+15 = 49

A=l

Now e

b
sima - sinf
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b sin o 3 x sin 120° 3x0.866

= sinf = — = e 2
B = 21°47°
y = 180°—(a+ f)= 180°—(120°+21°47")
yil=23824134 '

Hencea=7, f=21°47 and y=38° 13".
Example 2: Solve the triangle ABC, in which:
2 =/3621, ¢'=130:14; = B = 78210"
Solution: Here a > ¢ o>
o+ p+y= 180°
a+y = 180°-B = 180°-78° 10

= a+y = 101°50° @
o
= o S0E5s
By the law of tangents,
o 2=
an :
2 a—c oa-7 a-c a+y
Ty A o AT T e )
tan )

a—-y 36.21-30.14 ofees
so tan R 36.21 1 30.14 . tan 50° 55

a-y 607
lanses e s 635

x 1.2312

= tanT = 0.1126
a_
N~ 6206

a-y = 12°52 (i1)
Solving (i) and (ii) we have
a = 57°21’and ¥y = 44°29°

'_Igfmd side b, we use law of sines
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b = a = b=asm§

sinff ~ sina sin o
_ 3621xsin78°10°  (36.21)(0.9788)
b sin 57°21° = (0.8420) — 20

Hence b =42.09, y=44° 29" and a = 57° 21",

Example 3: Two forces of 20 Newtons and 15 Newtons, inclined at an angle of 45°,
are applied at a point on a body. If these forces are represented by two adjacent sides

of a parallelogram then, their resultant is represented by its diagonal. Find the resultant
force and also the angle which the resultant makes with the force of force of 20 Newtons.

Solution:
LLet ABCD be a lI", such that

6 1SN

lABI represent 20 Newtons

e A
IAD] represents 15 Newtons

and mZBAD = 45°.
ABCD is a ll"

—— e
|BC| =|4D| = 15N
mZABC = 180°—m£BAD = 180°
By the law of cosine,

(#5)

400 + 225 + 4242
1049.2

IACI = 10492 = 324N
By the law of sines,
BCi [ACi
sin m£ZBAC ~ sin 135°

Makel?ﬁ, I?EI ﬁﬁ and IZ}EI

D c
135/ 15N
20N B
—45° = 135°

2 2
—y— —a e
(IABI) - (13(:!) ~ 21ABi xiBCI x cos 135°

(20 + (152 =2 x 20 x 15 x —=

1
\2




sin mZBAC

mZBAC

E)C_'lx sin 135°
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15 x 0.707

Aci

= 32.4 = 0.3274

Solve the triangle ABC in which:
c=34
c =23,

1.  b=95,
2. - b= 125,

3. a=A3-1,
4. a=3,

. a=1,

36.21,

93

14.8 ,

3195

c=6
b=3,

and @ =52°.
and o =38220 5
=3+1 and y=60°

and f =36°20’

and 'y =38°13
Solve the following triangles, using first Law of tangents and then Law of sines:
Gi=ig = b = 42.09 and y = 44°29’
1 a = ¢c = 101 and B = 80°

b = ¢c = 161 and «a = 42°45°

9. .a-= b = 168 and y= 110°22
10: ' b = a. =32 “and'iiiai= 59230

61 ,

11. Measures of two sides of a triangle are in the ratio 3 : 2 and they include an
angle of measure 57°. Find the remaining two angles.

— - o

12, Two forces of 40 N and 30 N are represented by AB and BC which are

e

inclined at an angle of 147° 25", Find AC the resultant of AB and BC .
12.7.3 Case III: When Measures of Three Sides are Given

In this case, we can take help of the following formulas:

:-m'

i)

i)

the law of cosine;

the half angle’ formulas:

Example 1: Solve the triangle ABC, by using the law. of cosine when
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Solution:

and

Example 2:

Solution:

Now,

and

a

a=17 b=3c=35

We know. that

b+’ —d
cos o= — 5,

9+25-49 15 gl
COSIor=Nemmanine & = foani = =5

a = 120°
cos f= & +2‘fa'bh - 2= L B 09286

B=I]1°47-

y = 180°—(a+ pB) = 180°—(120°+21°47") =38°13".
Solve the triangle ABC, by half angle formula, when
a=283, b=317 c =428

2s = a+b+c = 283+317+428 = 1028

St =514 '

s—a = 514-283 = 231

Seh = 514—317= 197

s—¢c = 514 428 =

tan‘g = \I Ss(? Sa)c \’51?::28361 = 030
[0
5 = 20042 = 41°24°

‘a"g R D) \/ 581642213917 s s0.4429
g = 23“53’=:~B = 47°46°
'y =

7,,

180° - (o + ﬁ) = 180° - (41'J 24" + 47° 46 ) =90° 50°

b = 17
b = 40
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3 31.7 y € = 4238

4. 319 , b = 5631 SICIE =4O

5. a = 4584 |, b = 5140 , C = 3624.

6 Find the smallest angle of the triangle ABC,
when a =37.34, b =3.24, ¢ = 35.06.

7 Find the measure of the greatest angle, if sides of the triangle are
16, 20, 33.

8. The sides of a triangle are x* + x + 1, 2x + 1 and ¥’ - 1. Prove that the greatest
angle of the triangle is 120°. .

9. The measures of side of a triangular plot are 413, 214 and 375 meters. Find
the measures of the corner angles of the plot.

10.  Three villages A, B and C are connected by straight roads 6 km. 9 km and
13 km. What angles these roads make with each other?

12.8 Area of Triangle

We have learnt the methods of solving different types of triangles. Now, we
shall find the methods of finding the area of these triangles.

28 35Ph

a o
| |

Case I Area of Triangle in Terms of the Measures of Two Sides and Their
Included Angle

'With usual notations, prove that:

Arca ofinan,gleABC = %'bésin a%:l" ‘é‘casmﬁ"- S

Proof: Consider three different kinds of triangle ABC with m/C = Yas

1) acute  ii) obtuse and 1ii) right

From A, draw AD 1 BC or BC produced.

A
B €(D
DFig: (1) Fig: (iii) (o)
: AD '
In fig. (i), AC = siny
AD

sin (180°-9) = siny

]

In fig. (ii), 55
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In fig. (iii), i_lc) =R Ia=Rsin' 902 =1 sin\y
In all the three cases. we have
AD =ACsiny = b siny
Let A denote the area of triangle ABC.
By elementary geometry we know that
A= % (base)(alﬁtude)

A= ‘%BC.AD

A = % absiny

Similarly, we can prove that:

dﬁ%@"‘%ﬁ;ﬂs‘?&g‘a 'I. il -“‘s’ =

Case IL. Area of Triangle in Terms of the Measures of One Side and two Angles
In a triangle AABC, with usual notations, prove that:

S E e A 20N, .
. a sin fsin b”sin ysin & ¢ sin o sin
Area of triangle = Aisiny Y 0y

2sin & = 2sinfB T~ 2siny
Proof: By the law of sines, we know that:
QISR b4 ety 15C

sine = sinff = siny
sin o/ sin B
= a = Csin'y and b = csin'y

We know that area of triangle ABC is
A= absin y

2
= A = % MJ(M] sin y

sin ¥

sin y

[ ——
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In a similar way, we can prove that:

A g

{8

Case III.  Area of Triangle in Terms of the Measures of its Sides

In a triangle ABC, with usual notation, prove that:

Area of triangle = '\]s(s —a)(s-b)(s-c)
Proof: We know that area of triangle ABC is

1 !
A= 5 be sin o

a o i
= %bc.ZsinE cos 5 ( Sin a =2 sin‘zqcos-zq)
= be \/ (5= b;? —C) “”b_c Y (by half angle formulas)
< b \s(s—a)(s~b)(s—c)
e be

A= '\[s(s—a)(s —b)(s—c)
Which is also called Hero's formula.
Example 1: Find the area of the triangle ABC, in which
b =216 c¢ =302 anda = 52°40°
Solution: We know that:

AABC = % be sin = %(21.6)(30.2) sin 52° 40°

= % (21.6)(30.2)(0.7951)

AABC = 259.3 sq. units.
Example 2: Find the area of the triangle ABC, when
o= 35°17,, y = 45°13%and b= 42.1
Solution: o+ B+ y= 180°
B = 180°-(a+7 = 180° - (35° 177+ 45° 137) = 99° 30°




RN A Textbook of Algebra and Trigonometry

‘ Also b = 421, a=35°17, y=45°13", B =99°30
We know that the area of triangle ABC is

1 b sin ysin @
A= B ;
sin 8
el 1 (42.1)* sin 45° 13" sin 35° 17°
- 2 sin 99° 30°

1 (42.1)* (0.7097)(0.5776)
= 7 (0.9863)

A = 368.3 square units.

Example 3: Find the area of the triangle ABC in which
a=2754, b=3037, c=3425

Solution: ' a =2754,b=303.7, c=3425

2s=a+b+c
=275.4 + 303.7 + 342.5=921.6
s =460.8
Now s—a =460.8-275.4=1854
s—b =460.8 —303.7 =157.1
s—c =460.8-342.5 =118.3

Now  A=+[s(s—a)5-b)(5-0)

= 1/460.8 x 185.4 x 157.1 x 118.3
A =39847 sq. units.

A Fmd the area of the tnangle ABC, given two sides and their included angle
i) a= 200 , b = 120 A= 502
i) b= 37 S Ce =4S s ==302507

i)y a= 433 , b = 925 56° 44

N )

S L L S e LA e
R
p—
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% Find the area of the triangle ABC, given one side and two angles:

i) b= 254 ., ‘yu=i36241° NN oim=E4558178

)R =32 i Om=a 47524000 e B =T ()81 G

iii)| @="4.8 ¥, Wi ST 83242 88N Sy =30 372810 ¢
3. Find the area of the triangle ABC, given three sides:

1) a=18 : b =24 , ¢=30

i) a=524 3 b =276 e =519

i), ai=32.65 & b =42.81 , c=6492

The area of triangle is 2437. If a =79, and ¢ = 97, then find angle S.

5.  The area of triangle is 121.34. If a = 32° 155 B = 65° 37, then find
c and angle ¥.

6. One side of a triangular garden is 30 m. If its two corner angles are 22° %2 and
112° 1, find the cost of planting the grass at the rate of Rs. 5 per square meter.

12.9 Circles Connected with Triangle

In our previous classes, we have learnt the methods of drawing the following
three kinds of circles related to a triangle:

i)  Circum-Circle ii) In-Circle iii) Ex-Circle.

12.9.1 Circum-Circle::

The circle passing through the three vertices of a triangle is called a Circum-
Circle. Its centre is called the circum-centre, which is the point of intersection of the
right bisectors of the sides of the triangle. Its radius is called the circum-radius and is
denoted by R. : :

a b %y i Sc
2sine  2sinfB - 2siny

a) Prove that: R = : with usual notations.

Fig. (i) Fig. (i) . Fig. (iii)
(ZLBAC is acute) (Z£BAC is obtuse) (LBAC is right)
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Proof: Consider three different kinds of triangle ABC with mZA = o
i) acute ii) obtuse iii) right.

Let O be the circum-centre of AABC. Join B to O and produce BO to -meet
the circle again at D. Join C to D. Thus we have the measure of diameter

mBD =2R and mBC = a.
| 8 In fig. (i), mZBDC = mZA = o (Anglesin the same segment)

In right triangle BCD,
m_B___ = sinmZBDC = sinq
m BD
II. In fig. (ii),

mZBDC+mZA = 180° (Sum of opposite angles of a

= mZBDC+a = 180° cyclic quadrilateral = 180°)
= mZBDC = 180°-«
In right triangle BCD,
i B.£ = sinmZBDC = sin (180° - o) = sin &
m BD
IOI. InFig. (iii), mZA= o = 90°

O 110 90%= i ¢
m BD

In all the three figures, we have proved that

m BC :
= = sinQ
m BD
a - .
= 2QR= SIma = 2Rsine = a
A a
- 2sina
Similarly, we can prove that
b R.c
Seosnp wmd R =0
a b c

|  Hence R = @)

2sina” 2sinf ~ 2siny
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a) Deduction of Law of Sines: - R
phin | SR

a
weknowmatR=2sina=25in}3=2sin"y'-" R
‘a b c _
o ; sin@ _ sinf ~ siny 2R
4 _ b € Ghichis the law of si
T T siny"w chis ea\fo sines.
abe
b) Prove that: R =R
Proof: We know that: R = 4
: 2 sin @
a AL (it o«
= R = . Q‘ o ( sma=23m2cos2)
2.2511120082
a :
: ot =) (by half angle formulas)
be be
abc
4'\Is(s—a)(s_—b)(s-c)
abc
=N ( A=\!s(s-a)(s-—b)(s—c))

12.9.2 In-Circle

The circle drawn inside a triangle touching its three sides is called its
inscribed circle or in-circle, Its centre, known as the in-centre, is the point of
intersection of the bisectors of angles of the trlangle Its radius is called in-radius and
is denoted by r.

- ' A
a) Provethat: r = = w1th usual notatlons

Proof: Let the mtemal blSE-CtOl‘.'S of. angles of tnangle ABC meet at O, the in-centre.
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Draw (s—b_l_é_(-?,O_E_LA—C and OF 1 AB

B
Let, mOD = mOE = mOF = r
From the figure Area AABC = Area AOBC + Area AOCA + Area AOAB
' 1
A= %BCXOD-&%CAXOEw}EABxOF
1 1
: = par+; br+§ cr
1
= 5r(a+b+c)
1
A = 5r.2s (. 2s=a+b+0c)

=

12.9.3 Escribed Circles

A circle, which touches one side of the triangle externally and the other two
produced sides, is called an escribed circle or ex-circle or e-circle. Obviously, there

could be only three such circles of a triangle, one opposite to each angle of the
triangle.

The centres of these circles, which are called ex-centres are the points where

: the internal bisector of one and the external bisectors of the other two angles of the
4 triangle meet.

In AABC, centre of the ex-circle opposite to the vertex A is usually taken as /
and its raidus is denoted by r,. Similarly, centres of ex-circles opposite to the vertices

B and C are taken as /> and 5 and their radii are denoted by r, and r, respectively.

AL



a) With usual notation, prove that:
A
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2 d
— Tiin -l e v =
rl s—a’ 2 S""b > an I

§—C

Proof: Let I; be the centre of the escribed circle
opposite to the vertex A of AABC.

T e
From I}, draw ;D 1 BC,LE L AC produced

) )
and I}F L AB produced.
Join I, to A, B and C.

Let mh_D = Hlﬁ = - fﬂh—F =r
From the figure AABC = ALAB+ ALLAC-AILBC

1 : 1 1
= A = 5AB><I.F+§AC><IIE-—§ BC x 1D

1 1 1

= 5Cn+5 br, -7 an
1

A =35 nr(c+b-a
= %’1.2(s—a) 2s=a+b+c)
= (s—a)n
Hence e

In a similar way, we can prove that:

—

- ':‘_“A‘x" X
pwe
A

Example 1: Show that:

r= (s-a)tany = (s—b)tan
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o
Solution: To prove r = (s — a) tan 5

RHS.= (6@ (s-a)\/f?{sa—iq
| | = ,\/(S-a)(s—b)(s_c)
3 s

. _\/s(s —a)(s—b)(s—-c) A
= . Sz = =r

o
: (.s'-—a)tan‘z— = r

Ina similar way, we can prove that:

r o= (s—b)tang and r =(s-—c)tan%.

_ [+
Example 2:. Show that , = 4R sin 7 cos g cos '2Z .

Solution: RHS. = 4R sin% cosg cosI

. abc \/Q’ —b)(s—c¢) s(s b) _\/s(s c)

7, sgs—blgs—c!
A
S(s—a)(s—b)(s=c)
A.(s—a)
2 A
A(s-—a)

A

=i =85 - LHS.

_ B2y
Hence n = 4R Sin 5 cﬁsg cos%.
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e

Example 3: Prove that —-1 sl AU N G 24 bl 4.2
e ove _
Xxamp rlz rzz ’32 A?
1 1 1 1
Solution: " LH.S" =" —+t—t-—t==—

2
rasihing o125 tnls

(s—a)? (s=b)* % (s=c)

= AL AT S A2
S+ (s—a)l +(s—b)+ (s—c)*

—4 Az -
ﬂ.sz--z.';(a+.'J+cj|-|-|az+b2+c2
45— 25 . 25+ + b +
@+ b+

= R.H.S.

Hence the result.

Example 4: If the measures of the sides of a triangle ABC are 17, 10, 21.
Find R, r, r1, r> and r3.

Solution: Let a = 17, b = 10, c = 21
2s = a+b+c = 17+10+21 = 48
= s = 24

a = 24-17=7, s—b=24-10=14 and s—c=24-21=3
A= '\[s(s—a)(s b)(s—c)

= A = \124(7)(14)(3 = 84
R

S B el @:10/521 ianit 85
ow. _4A =1 e =-iq
A o84 AR WL
Ut = g e T e
_A 84 A% 84
T F s b e 6, PR Rrnts = 3=-28



1210 Engineering and Circles Connected With

;. Triangles

| We know that frames of all rectilinear shapes with the exception of triangular
ones, change their shapes when pressed from two corners. But a triangular frame does
not change its shape, when it is pressed from any two vertices. It means that a triangle
is the only rigid rectilinear figure. It is on this account that the engineers make
frequent use of triangles for the strength of material in all sorts of construction work.
Besides triangular frames etc., circular rings can stand greater pressure when pressed
from any two points on them. That is why the wells are always made cylindrical
whose circular surfaces can stand the pressure of water from all around their bottoms.
Moreover, the arches below the bridges are constructed in the shape of arcs of circles
so that they can bear the burden of the traffic passing over the bridge.

a) We know that triangular frames change
their rectilinear nature when they are
pressed from the sides. From the strength
of material point of view, the engineers
have to fix circular rings touching the
sides of the triangular frames. For
making these rings, they have to find the
in-radii of the triangles.

b) In order to protect the triangular discs
from any kind of damage, the engineers
fit circular rings enclosing the discs. For
making rings of proper size, the
engineers are bound to calculate the
circum-radii of the triangles.

¢) Incertain triangular frames, the engineers
have to extend two sides of the frames. In -
order to strengthen these loose wings, the
engineer feels the necessity of fixing
circular rings touching the extended sides
and the third side of the frames.
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For making appropriate rings, the engineers have to find ex-radii of the
triangles.
The above discussion shows that the methods of calculations of the radii of in-

circle, circum-circle and ex-circles of traingles must be known to an engineer for

performing his professional duty efficiently.

B

o ' o
1. Show that: i) r=4R sin b} sin ) sin %’ il) s =4R cos 7 cos g cos '21/

Yo NG

L Sl R 2 bisin o )
2. Show that: r=asinz sin sec = bsmzsmzseCZ'
s oo By
= — sin-—sec—
¢ sin 5 5 >
o
3. Show that:i) r =4Rsin7 2 cosg cosz
o (o4 :
i) r,=4R cos 7 sing cosf,z iii) r, = 4R cos 5 €os 5 sin

4. Show that:

R
R

1) = stanz i) r = stany i) r, = stan

5 Prove that:

. 1 2
1 — ]
) rr,+ L+ T K) i1) I A

. S 2 £
iix) U S 4R iv) rr,r, rs?

6. Find R, 1, ri, r» and r3, if measures of the sides of triangle ABC are
D= 131 = pie= i) 48 c =15
) Sg=0 34 b =R o0 e
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7 Prove that in an equilateral triangle,
DN rERE =122 3 ii) r:R:rl:r,:r3=l:2‘.3:3:3

8. Prove that:

o o
A= r* cot 5 cotg ce.t%r iil) r = stan 5 tan g tan%’
o
i) A= 4Rr cos 5 cosg cos%,
T TR TS e e
9, Show that: 1) TR b it tea i1) = r + r2+ rs
10. Prove that:
o o
_asin‘gsin% bsini.sing Csini.sin‘g
r = o = E = _'}_/
cos 5 cos 5 cos 5
11. Provethat: abc(sin @+sinB+siny = d4As.

12.  Provethat: i) (5+n) tans-

C.

i) (r,—r) cot—;_- =c



3 [nverse’ Trlgonoinetrlc
Functlo -

13.1 Introduction

We have been finding the values of trigonometric functions for given
measures of the angles. But in the application of trigonometry, the problem has also
been the other way round and we are required to find the measure of the angle when
the value of its trigonometric function is given. For this purpose, we need to have the
knowledge of inverse trigonometric functions.

In chapter 2, we have discussed inverse functions. We learned that only a
one-to-one function will have an inverse. If a function is not one-to-one, it may be
possible to restrict its domain to make it one-to-one so that its inverse can be found.

In this section we shall define the inverse trigonometric functions.

13.2 The Inverse sine Function:
The graph of y = sin x, — o < x <+, is shown in the figure 1.

34

IMF:! f

y=sinx e -1
(€ (~oa =)
vel-1.1]

=
L
3 I
Q'—
=

- Fig: 2
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We observe that every horizontal line between the lines y =1 and y =-1 intersects
the graph infinitly many times. It follows that the sine function is not one-to-one.

; X ; : : -T T
However, if we restrict the domain of y =sin x to the interval [— 5] , then the

restricted function y=sinx, -gsxsﬁ is called the principal sine function;

which is now one-to-one and hence will have an inverse as shown in figure 2.

o . A . I A - : . -l
This inverse function is called the inverse sine function and is written as sin X
Or arc sin x.

The Inverse sine Function is defined by:

y =sin"'x, if and only if x = sin y.
where —gs;,:s% and —-1<x<l.

4 . - . . =]
Here y is the angle whose sine is x. The domain of the function y=sin" x

=

iIs —1<x<1 itsrangeis

<y

19 'Fl

A
I

The graph of y =sin"'x is obtained by reflecting the restricted portion of the
graph of y =sinx about the line y = x as shown in figure 3.

We notice that the graph of y =sinx is along the x—axis whereas the graph

- of y=sin™" x is along the y— axis .

' el : G A
Example 1: Find the value of @) sin™ -J2; (i1) sin ](—E) -
D
Solution: (i) We want to find the angle y, whose sine 1s =

= sny=—, L

(S

15
<y<3
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(i) ~We want to find the angle y whose sine is —%

: 1 n <n
=Ry AL <35
= siny > o= Sip
T
G
e
sin” ( 2) 6

13.3 The Inverse Cosine Function:

The graph of y = cos x, —eo < x < +o0_is shown in the figure 4.

"

b v=Cosuy
Domain: [0, ]
_1' Range: [ -1, 1]
L —» X
0 i3 i :
2
-l -
{a) Fig: 4
Yy
A,
'." x=Cosy
b y |
A i .
ine ,*
(-1, m d v
S Y=Y y = Cos 'x
i T Domain: [ =1, 1]
y=Cos 7' x. 2 Range: [0, m
0, 1) . y=Cosx
1 i / . l >
| - .0 l1.0)E\Q‘ 3 S g 4] :
o 2 [}
'] 3 -1 [n' _“1} o.
r'
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We observe that every horizontal line between the lines y =1 and y =—1 intersects

the graph infinitly many times. It follows that the cosine function is not one-to-one.
However, if we restrict the domain of y=cosx to the interval [0,7], then the

restricted function y=cosx, 0<x<ris called the principal cosine function;
which is now one-to-one and hence will have an inverse as shown in figure 5.

This inverse function is called the inverse cosine function and is written as
cos™'x or arc cos x.

The Inverse Cosine Function is defined by:
y = cos™'x, if and only if x = cos y.
where 0<S y<m and -1<x<1.
Here y is the angle whose cosine is x. The domain of the function y = cos™ x

1S —1<x<1 anditsrangeis 0<y<r.

The graph of y =cos ~'x is obtained by reflecting the restricted portion of the

graph of y =cos x about the line y = x as shown in figure 6.

We notice that the graph of y = cos x is along the x —axis whereas the graph

of y =cos™'x is along the y—axis.

stbe. ___,_____'embetedthat cos xaf:(cosx) B

Example 2: Find the value of (i) cos™1 (ii) cos™ (- %) )
Solution: (i) We want to find the angle y whose cosine is 1
= _cosy=l, 0<y<m
= y=0
cos” 1=0

(i)  We want to find the angle y whose cosine is L

= cosy:—l, 0<y<nm

=
Bl
. = cos (2)— 3
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13.4 Inverse Tangent Function:

y=1lanux x E(—oq-!-c-o] 5 y=Tanx, x E(—J‘D’E.‘E’Z) Y
}IE(_MH-MJi' /' Vi (=t 1 y=Tan™ x
\ . —oco0< K<+ oo
. Y _ 2
: :)-lan.r T oy<}
‘ ) | [ e
' < = N 2
: : > >
I T et
2. 12
' : TS AT | NSRS S
Fig: 7 4 : 2
: Fig: 8
y
&
y=Tanx % |
; line
: T ¢ T yiEx
: 2 e :
----------- :.------.-- -:1---------
S
: : 1 e
-1 . M it
y=Tan " x, y € (—72, W2) -3 . 2
X E(—oq-;cd -— '—"" ir :
.......... R --....l.t--.i...-..-....
: 2
¢ : l * Fig:9
y=Tanx
x € (—m2, W2)

’\‘ E(—o-o‘-l-m}

The graph of y = tan x, — 0 < X < +eo, is shown in the figure 1
We observe that every horizontal line between the lines y =1 and y = —1 intersects

the graph infinitly many times. It follows that the tangent function is not one-to-one.

5 —T T
However, if we restrict the domain of y =Tan x to the interval Fr <x<3 , then



A Textbook of Algebra and Trigonometry

We observe that every horizontal line between the lines y =1 and y =—1 intersects

the graph infinitly many times. It follows that the cosine function is not one-to-one.
However, if we restrict the domain of y=cosx to the interval [0 TC] then the

restricted function y=cosx, 0<x<ris called the principal cosine function;
which is now one-to-one and hence will have an inverse as shown in figure 5.

This inverse function is called the inverse cosine function and is written as
COS™'X Or arc cos x.

The Inverse Cosine Function is defined by:
y =cos” x, if and only if x = cos y.
where 0S y<®m and -1<x<1.
Here y is the angle whose cosine is x. The domain of the function y = cos™ x

is —1<x<1 anditsrangeis 0<y< .
The graph of y=cos ~'x is obtained by reflecting the restricted portion of the
graph of y = cos x about the line y = x as shown in figure 6.

We notice that the graph of y = cos x is along the x —axis whereas the graph

of y =cos™'x is along the y— axis .

- membered that cos™ x vﬁ (cos x) .

1
Example 2: Find the value of (i) cos'1 (ii) cos™' (- E).
Solution: (i) We want to find the angle y whose cosine is 1
= . cosy=1, 0<y<m
= y=0
cos™ 1=0

(i1) We want to find the angle y whose cosine is —%

= cosy:—l, 0<ysn~m

- _2“
& y =
Sl X
cos (2)-. 3
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13.4 Inverse Tangent Function:

YElanxy € (—eo + o - y=Tanx, x € (-2, W2) y
) € (~oa +o9 2 / y € (=09 + o9 toepisly
\ —o0< X <4 o
3 ty=tlanx . -—E<)‘<E
: : n e
; I 2
: : > >
T ¥ > X
2. i
) : B e | e oir
Fig: 7 2 ' 2
: Fig: 8
y
»
y=Tanx &
R * line
E fu N “yix
: 2 ' :
----------- :--------o- -:J.---.o-----
Ny~
: : \ L
-1 T, W IC i
y=Tan " x, y € (-n2, w2) -2 2
X € (=09 + o9 -« s /alin 0
.......... ,E:. '""'ﬁ"'f"'""""
4 T 2
i : l " Fig:9
y=Tanx
x € (-2, W2)

y € (—oo, + o9

The graph of y = tan x, —e0 < x <+, is shown in the figure 7.
We observe that every horizontal line between the lines y =1 and y =—1 intersects

the graph infinitly many times. It follows that the tangent function is not one-to-one.

. : : : - /4
However, if we restrict the domain of y = Tan x to the interval o <x<—2~, then
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the restricted function y=tanux, -—E<x<5 is called the principal tangent

function; which is now one-to-one and hence will have an inverse as shown in figure 8.
This inverse function is called the inverse tangent function and is written as

tan~'x orarc tan x.
The Inverse Tangent Function is defined by:

y=tan"'x, if and only if x = tan y.
where —%<_v<§ and —eo<x <+,

Here y is the angle whose tangent is x. The domain of the function y = tan™ X

: d ; T T
i§ —e0 < x < +oo and its range is —-E<y<5.

The graph of y =tan™'x is obtained by reflecting the restricted portion of the

graph of y = tanx about the line y = x as shown in figure 9.

We notice that the graph of y =tanx is along the x— axis whereas the graph

of y=tan™ x is along the y—axis.

ooy )

Example 3: Find the value of () tan”'1 (i) tan”' (=/3).

Solution: (i) We want to find the angle y, whose tangent is 1

LRLLE

tany =1, = e i
d e

n
4

sk
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()  We want to find the angle y whose tangent is —+/3

= tany:—\/i, —Tz—t<y<%.
_2n ; i
e
tan™' (—Ji):g;
t

13.5 Inverse Cotangent, Secant and Cosecant Functions

These inverse functions are not used frequently and most of the calculators do

not even have keys for evaluating them. However, we list their definitions as below:

i) Inverse Cotangent function:
y=cotx, where 0<x<m is called the Principal Cotangent Function,

which is one-to-one and has an inverse.

The inverse cotangent function is defined by:
y=cot'x, if and only if x=coty
where 0 < y<m and —o0 < x < +o0

" The students should draw the graph of y= cot™'x by taking the reflection

of y=cot x in the line y = x. This is left as an exercise for them.

ii) Inverse Secant function

T o
y=secx, where 0<x<T and X#— 1 called the Principal Secant

Function. which is one-to-one and has an inverse.

The Inverse Secant Function is defined by:

y=sec™'x, if and only if x =secy
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where 0< y <, y#% and |x| >1.

The students should draw the graph of y =sec™ x by taking the reflection

of y=secx intheline y=x. This is left an exercise for them.

iii)  Inverse Cosecant Function

y=csc x, where —-;5 <y Sg and x# 0 is called the Principal Cosecant

Function, which is one-to-one and has an inverse.
The Inverse Cosecant Function is defined by:

y=csc™ x, if and only if x =cscy

where —%‘sys , y#0 and I x| 21

(SN

The students should draw the graph of y =csc™'x by taking the reflection

of y=cscx intheline y=x. This is left an exercise for them.

the Inverse Trigonometric Functions, we have seen that

ti_(?‘ inverses of Trigonometric Functions, but restricting

nctions, we have made them as functions.

13.6 Domains and Ranges of Principal Trigonometric
Function and Inverse Trigonometric Functions.

From the above discussion we get the following table showing domains and

ranges of the Principal Trigonometric and Inverse Trigonometric Functions.

1}



Functions Domain Range
= 0 % —1sx=1
y=sinx __:rerSE
2 2
y=sin"'x ~l<x<l TR <”
2 2
y =cos X 0 <x <T —1£x<1
y :cos'l X —-1<x<1 OEIS_TE
y =tan x - (—eo, 20) or R
<x<—
2
et ] LY,
yi=tani x (o0, 0) or TR T <x<£
2 2
y =cotx O<x<Tm (“'°°:°°)01'///_\>.«
= -1y —o0, &0 <
y=cot X (—o0, 0) OF TR 0en=n
= <-lory>1
5 y =Sec x [O,TC],I-'FE ys yz
2
e T '
y=seC X x>-lorx<1 [0, 7, o
2
=CsSC X T <-lory>1
% [—'2',5],1:#0 7 4
y=csc x x<—lorx>1 T T
["E:E]a )’*0
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| 5
Example 4: Show that cos™ % = sin” T3

13-
12
Solution; Let cos™ 12 = a = cosa= 73
13
sin@ = j:'\}l—cosza— + 1 Ly
= T e 13

=i l—;44

169

eeNi9=ldd 25 S
T TEURMES S 2N IT69" = =513

cos & is +ve and domain of ¢ is [0. ], in which sine is +ve.
HE5

13

T

: S 1
Thus sin@= 73 = aN=sing

A 1B)

: =S
Hence cos™ 13 =sin N

g
Example: 5 Find the value of

i) sin (cos™ g) . ii) cos (tan™'0) iii) sec [sin™ (—%)]
Solution:

i) we first find the value of y, whose cosine is ?

: C.{)S y=__§., Ogygﬂ
{ T
i = =.—
| e
% = (cosh ﬁ) =X
= 2 6

: a4 V3 r_ |
sin (cos™ —) = sin—=—
2 G2

ii) we first find the value of y, whose tangent is 0

tany=0,  -Lcy T
A
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= y=0
= (tan“!O) =0

s cos(tan™'0)= cos 0=1

: e A 1
iii)  we first find the value of y, whose sine is ——

; 1 T T
siny=——, — Sy =
% 2 2 4 2
1L
= = —=
5 6
= sin"(—~1—)=—1t—
2 6
2

ety 2
sec [sin™ ( 2)]

NG

Example: 6 Prove that the inverse trigonometric ~functions satisfy the
following identities:

- L | T =1 =] T . - |
i) sin” x= oo and . . cos o X= o R Sin X
c n W

ii) tan~' x:%—cot"x and cot™ x:-z—-tan hx

e =] T 4 S T -1

iil) sec " x= 5 csC ™ x and cs¢” x=—-—-seC X
Proof:
Consider the right triangle given in the figure B
Angles ¢ and f3 are acute and complementary.

/4
= a+fi= = a =
T T
= a= E_ﬁ and B= E_a )

Now sin &= sin(-’-;- —B)=cosfB =x (say)

o a=sin'x and B=cos™'x

Thus from (i) we have:
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s o] 4 -1 =] ToRR
sin x=5—cos X and cos x=5—sm X

In a similar way, we can d derwe the identities (ii) and (iii).

£ ~ Exercise13.1 o _‘
1. Evaluate v wnthout usmg tables / calculator:
i) sin? (1) ii) sin™ (=1) iii) cos ‘(23]

iv) . tan' [—%} V) cos‘l[%) vi) tan” (\]_l_,’;.“]
vii) cot™ (1) viii) cosec™ [‘Ti) ix) sin' (_\_jl"i)

2. Without using table/ Calculator show that:

- 4 24
1) tan™" % = sin 153 i) 2 cos™ 5 = sin” 25
" 4
111) cos! 45 = cot™ 3
3) Find the value of each expression:

) COS(Siﬂ_IL} ii) Sec[cos"l] iii) tan[cos"l ﬁ}
V2 ) 2 2

iv) csc(tan" (-1)) V) sec[sin" (—%)] vi) tan(tem-'1 (—l))

vii) sin[sin‘l (l)) viii) tan(sin" (—}-)J ix) sin(tan"(—l))
13.7 Addition and Subtraction Formulas

1) Prove that:

sin”" A+sin”' B = sin‘l(A\Il-Bz-n-B\ll—Az)
Proof: Let sin'A= x =sinx = A

-and sin”'!B= y =siny = B

Now CoS X = t‘\fl—sinzx = +1\/1-A
. 4 T T . ;

In sin x = A, domain = —E,E],mwhjch
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Cosine is +ve,

cCoOsSXx = '\fl—A"
'\JI—B'

Now sin(x+y) = sinxcosy+cosxsiny

Similarly, cos y

A\1-=B"+B\l-A
sin” (A\1-B + B\[1-4%) ..
sin” A +sin” B = sin” (41— B> + B\[1-A%)

In a similar way, we can prove that
2) [sin' A-sin"' B = sin” (A\[1-B’- B\[1-A%)

= x+Yy

3) |cos'A+cos” B= cos (AB-~[(1-AD(1-BY))

4) cos'A—cos™' B= cos”! (AB ++[(1 -A%)(1 - BY))
5) Prove that:

i A+B

1 o phy -1 A+D

tan A+tan B = tan 1—AB

Proof: let tan' A= x =tanx = A
and tan”' B = Yo =tany. =B

tanx+tany A+B
l-tanxtany ~ 1-AB

Now tan(x+y) =

4A+B
= xX+y = tan 1_AB
A+B
-1 e =1 .
tan” A+tan” B = tan” g
In a similar way, we can prove that
A-B
=il ] oy =]
6) tan" A-tan” B = tan” 7 _—p
Cor. PuttingA=B in
_ E AR
tan‘A+tan'B=tan'm, we get
2A+A

tan" A+tan' A = tan 1A
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Provc the followmg
8 §1253, 1 e B Stk
sm 13 —= + sin 25 = = Cos 325 . tan 4 + tan e an 19
12
2 tan™! %: sin”! % : [H'mt: Let tan™" %: x. and show Sin 2x = 'E]
1120 1 12 S a4, K
119= =2 cos” 13 5. sin \!§+COI 3-4
: 1 17 7. i 77 13 A
sin” 5+sm 17-sm 35 . sin 85_Sm 5—cos 17

1
cos™ g—i +2tan” 5= sin”' %

3 = J _18 T
-1 U SR s
S TR

[Hint: First add tan™ % +tan™ % and then proceed]

Ly e a16 ©
sin 5+sm 13+sm 65=2
il ol O | et |
tan” jr+tan e=tan” 3+tan o
11 i
‘2tan gttan =7
Show that cos(sin™ x) =41-x°

Show that sin(2cos™x) = Zx\ll =

Showthat cos(2sin”x) = 1-2x
Show that tan™ (—x) =—tan' x
Show that sin™' (—x) =—sin'x
Show that cos™ (-x) =m—cos x

Show that tan(sin'x) =

Given that x = sin™" %,'ﬁnd the values of following trigonome_:tric functions:

sin x, cos x, tan x, cot x, -sec x and csc x.




~__Solutions of
1 4 ¢ 'Trigonometric
| Equation =

14.1 Introduction

" The Equations, containing at least one trigonometric function, are called
Trigonometric Equations, e.g., each of the following is a trigonometric equation:

: 3
sinx=75 sec x=tanx and szx—secx+1=z

Trigonometric equations have an infinite number of solutions due to the periodicity of
the trigonometric functions: For example

If sin@=0 then 6=0, 7, £2m, ...
which can be written as 8 =n 1, where ne Z.
In solving trigonometric equations, first find the solution over the interval

whose length is equal to its period and then find the general solution as explained in
the following examples:

1
Example 1: Solve the equation sinx = 5
: 3 1
Solution: sinx = 5
! - T
sin x is positive in I and II Quadrants with the reference angle x="¢.
W shr
Xi= e an_d X=R—6="Tg where x € [0, 2m]
Since 2 is the period of sin x

'11: 5n
General values of x are ¢ +2nm and Gt .neZ
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T S
Hence solution set = {E - 2mt} U] { "g + 2mt} ,ne Z
Example 2: Solve the equation: 1 + cos x=0
Solution: " licosx = 0
= cosx =" —1

Since cosx is—ve, thereis only one solution x=7 in "[0,2m]
Since 27 is the period of cos x
General valueof x is T+ 2nn, neZ
Hence solution set = { &t + 2nx }, nez
Example 3: Solve the equation: 4 cos’x—-3=0
Solution: 4cos’x-3 = 0

= cos’x = % = cosx = ilzﬁ
. \3
1. If cosx = 2

Since cosx is+ve inIand IV quadrants with the reference angle x=

L

T
3 6 where x € [0, 27]
As 2w is the period of cos x.

-It_ 117w

General values of x are: 6+2mt and "'6—4- 2nt , neZ.

ii. -I.f cosx:—35

2

: T
Since cos x is —ve in IT and III quadrants with reference angle x = ¢

n
L Wt and x=x+%=? where x € [0, 27]
As 27 is the period of cos x

T
General values of x are 5?ﬂ:+2mt and _?n+2rm SnEZ

_—'

w
6



14.2 Solution of General Trigonometric Equations

Chapter 14: Solution of Trigonometric Equations JEIIR
} , neZ

3 n
Hence solution set = {% + 2m|;} v {-!-? - 2,,,,;} v {%‘ + 2n1|:} U {..6_ +2nT

When a trigohometric equation contains more than one trigonometric
function, trigonomeétric identities and algebraic formulae are used to transform such
trigonometric equation to an equivalent equation that contains only one trigonometric

function.
The method is illustrated in the following solved examples:
Example 1: Solve: sin x + cos x = 0.

Solution: sinx+cosx= 0

sinx cosx Bkt
e = U (Dividing by cos x # 0)
= tanx+1 = 0 —i taninck—re|

tan x is —ve in II and IV Quadrants with the réference angle x =

T 37
X=R-—7="7 where x € [0, ]

As Tt is the period of tan x,

. 3
General value of x is 3 hnm, o € Z

N 3n
Solution set = 7 thmf,ne Z

. 3 3
Example2: Find the solution setof :  sinx cos x = 4 -

\3

Solution: sinxcosx = 4

\a

= %(2sinxcosx)= 4

\3

.=7 sin 2x = 2

LU
4
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T
sin 2x is +ve in I and IT Quadrants with the reference angle 2x=73

T T  2n {
2x = 7_,: and 2x=n—§ =3 are two solutions in [0, 27]

As 21 is the period of sin 2x.

T 2n
General values of 2x are '§+ 2nTt and 3+ 2nn, neZ

T T
= Generalvaluesofxaregﬂm and 3+ nm 1 InceZ

: T T
Hence solution set = {E + mt} U {g + :m} , nelz

~@i;illa.tit‘ins of tlie form sm kx c, we. ﬁrst ﬁnd the soluﬂon gf ‘

Example 3: Solve the equation: sin Zx =9COS'x

Solution: sin2x = cosx
= 2sinxcosx =R COSTX
= 2sinxcosx—cosx= 0
= cosx(2sinx—-1) = 0
cosx= 0 or 2sinx—1= 0
i. Ifacosx =10
= lezE and xz%n where x € [0, 2x]
As 2 is theperiod of cos x. I
T 3n IO
General values of xare 5 +2nm and 5+ 2nt , ne€eZ

1i. If 2sinx—-1 =20

At
= smx=2

:11

Since sin x is +ve in I and II quadrants with.the reference angle x =7¢

T T : :
x=7¢ .and XR=MU=—"ri =i where x € [0, 27]
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.. General values of x are L+ 2n 7 and 5§+2nn, ne Z,

As 2m is the period of sin x.

; 3 S5
Hence solution set = [% + 2111t] @) {-%E + 2nn} U {% + 2rm} ] {TSTE + ?.rm} ,heZ

Example4 : Solve the equation: sin” x + cos x = 1.

Solution: sinx+cosx = |
= l-cos’x+cosx = 1
= —cosx(cosx—1) = 0
= cosx = 0 or cosx-1=0
i. If cosx=0
T 3n
= i and x = T where x € [0, 27]

As 2m is the period of cos x

b8 3
General values of x =5 + 2nmt and it 2nm , neZz
i If cosx=1
= x=0 and x =2xm where x € [0, 2x]

As 27 is the period of cos x

General values of x=0+ 2nntu 2n+ 2nn.n€ Z.

' n | [3n | ]
Solution Set = i Zrmj U{E’-&- 2nm( L {2nm} U {2R + 2nT}

{2(n+ )n} c (2nn},ne Z.
T (3m
Hence the solution set = {5 + Z;m} v 1? & Znn} U {2nn}, n € .Z.

Sometimes, it is necessary to square both sides of a trigonometric equation. In
such case, extraneous roots can occur which are to be discarded. So, each value of x must
be cheched by substituting it in the given equation.

For example, x =2 is an equation having a root 2. On squaring we get
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x* = 4 which gives two roots 2 and —2. But the root —2 does not satisfy the equation
x = 2. Therefore, -2 is an extaneous root.

Example s: Solve the equation: €s¢c x = \ﬁ + cot x.

Solutioil: cosecx = \ﬁ + cot x ()
= —.l_= 3+g_gﬁ | |
sin x sin x
= 1=‘\Bsinx+cosx
= ‘1-cosx=13sinx
2
= (1=cosx)’=(y3sinx)
= 1-2cosx+cos’x=3sin"x
= 1-2cosx+cos’x= 3(1-0052 X)
= 4cos’x—2cosx—2=0
= 2cos’x—cosx—1=0
= (2cosx+ 1)(cosx-1)=0
= cosx:—% or cosx=1
’ 1
1. If cosx = -5

Since cos x is —ve in I and III Quadrants with the reference angle x =

wia

TR 2, 4n
= x““‘§'="3£ and x=n+%=T where x € [0, 27]

41
Now x = =3~ does not satisfy the given equation (i).

4 s 2r . ;
x = 3 isnot admissible and so x = 3~ 18 the only solution.

Since 27t is the period of cos x

General value of x is z?n+2mt , nezZ

If cos x=1

=: x=0 and x =2t where x€ [0,2n]
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Now both cscx and cot x are not defined for x=0 and x = 2%

x =0 and x = 2w are not admissible.

y 2n
Hence solution set = {5+ 2nn| , ne Z

3.

Find the solutions of the following equations which lie in [0, 21t]
\3

2 ii) cosec 0=2 iii) secx=-2 iv) cot 6= %

i) sinx=-

2, Solve the following trigonometric equations:
i) tan’ 9='1§ ii) cosec’ 8=% iii) sec’ 9=% iv) cot’ 0 =%
: Find the values of 8 satisfying the following equations:
3. 3tan’0+2\3tan 0+ 1=0
4. tan’0-sec6-1=0
5. 2sin@+cos’0-1=0
6.  2sin’6-5in =0
7.  3cos* —2\[3sin Ocos O—3sin?6=0  [Hint: Divide by sin’ 6]
8. 4sin® -8 cos B+ 1=0
Find the solution sets of the following equations:
9, V3 tanx-secx-1=0
10. cos 2x=sin 3x [lﬁ{lt: sin 3x =3 sinx -4 sin® x]

11. sec36=secH

12. tan260+cot8=0

13. sin2x+sinx=0

14.  sin 4x—sin 2x =cos 3x

15.  sinx+ cos 3x=cos 5x

16. sin3x+sin2x+sinx=0

17.  sin 7x —'sin x = sin 3x

18. sinx+sin3x+sinS5x=0

19. ~ sin@+sin30+sin560+sin76=0
: 20. cos 6+ cos 30+ cos 50+ cbs 76=0
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Answers

Exercise 1.1
1. i)
ii) Not Closed w.r... “+'closed w.r.t. *x’
iii) Not Closed w.r.t. “+'not closed w.rt. X’

iv) Not Closed w.r.t. “+’ closed w.r.t. *x
2. i) Commutative property w.r.f. ‘+’

ii) Associative property w.r.t. “+

iii) Associative property w.r.t. “+

iv) Additive identity

v) Multiplicative identity

vi) Additive inverse

vii) Additive inverse

viii) Commutative property w.r.t. ‘x’

ix) Left distributive property

x) Right distributive property

xi) Associative property w.r.t. ‘x’

xii) Left distributive property
3.. i) Additive property

ii) Multiplicative property

iii) Additive property

iv) Multiplicative property

v) Multiplicative Property

vi) Multiplicative property

on page 12
Closed w.r.t. *+ closed w.r.r. *x’

6. i) I1+4x i) 9
... ad+bc b-a
m———
ad —bc ab-1
Exercise 1.2 on page 16
4 D) 0 i) -1 )i iv) —i

5. i) ib i) ~/5i
6. (104) 7.

1ii) 4f iv) —I
1) — v e
9 2

(15-9) 8. (-36,32)

24 2
(232 L (i ez
9. ( ) 10. (=150) 11 (29 29)
170552 Sl
2- e G . . i e )
- [73 73] 4 ‘)(65 65]

i) (1,0

15. i)

(a +2ib)(a - 2ib)

i) (3a+4ib)(3a—4ib)

i) 3(x+iy)(x—iy)

o ) o SR L

41 41 i 2 20 .
Exercise 1.3 on page 28 :
1. Numbers are shown on the graph paper in the ‘

complex plane.

T ite £ snme S Gy L 2
3 55 34 34 5 5
3. 0) i) a i) i iv) -1
5. 0) S+4i i), 3+5v3i
o PG R R N
i) ———— iv) ——=+—7=i
T3RRNE J6 3
i)l i) 1
iii) "1"2- 2 iv) a® +2abi-b*
a’-b’ 2ab
v)

= i
(@ +b%)* (a*+b%)?

vi) a® —3ab” +(3a’b-b%)i
vii) @’ ~3ab? - (3a*b-b*)i



e
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2197 2197
Exercise 2.1 on page 34
1. .i) {x|xeNAx<1000}

i) {x|xeW Ax<100}

iii) {x|xeZA-1000=<x <1000}

iv) {x|xeZA-500<x<0}

v) {x|xeNAal00<x <400}

or {x|xeZal00<x<400}

vi) {x|xeZA-500<x<-100}

vii) {x|x is the capital ofa province ot:
Pakistan}.

viii) { x| x is a month of the Calendar year
beginning with J} :

ix) {x|x is an odd natural number}

x) {x|xeg}

xi) {x|xe 7R Al<x<2}

xii) {x|xe ZA-100< x< 1000}

2. Descriptive form and Tabular form
i) The set of the first ten natural numbers.

{1,2,3,....,10}

" ii) The set of natural numbers between 4 and 12
(5,6,7,....11}

iii) The set of integers between —5 and 5
230 Ay

iv) The set of even integers between 2 and 5.
{4}

v) The set of prime numbers less than 12.
{2,3,5,7,11}

vi) The set of odd integers between 3 and 12
{5,7,9,11} ‘ :

vii) The set of even integers from 4 upto 10.
{4,6,8,10}

‘viii) The set of even integers between 4 and 6.

{} :
ix) The set of odd integers from 5 upto 7. .

{57}

4 D) {ab}{ad

x) The set of odd integers between 5 and 7
{} : -
xi) The set of natural numbers x satisfying x+4=0
{&)
xii) The set of a rational numbers x satisfying
XX =2 (T
xiii) The set of real numbers x satisfying x=x
set'of real numbers.
xiv) The set of rational numbers x satisfying
x=-x: {0}
xv) The set of real numbers x satisfying x # X
{ } : ‘
xvi) The set of real numbers x which are not
rational, Q"

3.

i) Finite ii) Finite  iii) Finite  iv) Infinite

v) Infinite  vi) Infinite  vii) Finite  viii) Finite
1ix) Infinite X) Finite xi) Infinite " xii) Finite
- xiii) Finite - x11) Finite  xv) Finite xvi) Infinite

cii) {0}, {1} .
iii) {13,5,...}, {2,4,6;...} or {1,3.},{2,4}
iv) N,W or {~2,-1},{0,])

v) N,Zor {—‘1,0},{% 1}

v) 2,0 or 024}, (15,5}
vii) {0,2,4,..}, {13,5,...} or 2,4} {13}
viii) {x| xe O Al<x <2},
{x|xeQAlLx<2}or {1}, {2}
8., Yes Qor {} )
6. {a, b,} is a set containing two elements a and
b, but {{a,b}}is a singleton containing only
one element {a, b}

7. i) True ii) True iii) False
iv) true v) False vi) False
8 i) 1, i) 2%=4 i) 2" =128
iv) 22=256¢ v)2°=4 vi)2’=8
9. i) {@,{9,{11},{9,11}}

i) { @6 (0 b feh i s,
G e b )
o o) (i), {0))
V) (@@}, {b.c}}. @b}
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10) i) Equivalent
iii) Equivalent

ii) Equal
iv) Equivalent

v) Equivalent vi) Equivalent
vii) Not equivalent
Exercise 2.2 : on page 40
1)i) AcB

AnB

iy

\l

AUB

i) AcB

2'
1) A and Bare overlapping

T_B-A'

: A-B

3. i) Bg4 i) AcB iil)) A=@

" iv)BcAd v) AnB=®dvi) AcCB
vi)ANB= @ viii) ANB=@
ix)B=A' x) It holds always.
xi) Bc A xii) A=U

4' i) {ll3ls’?)9} ii) {61‘?)8‘991 0}

iii) {1,2,3,4,5,6,8,10} iv) {6,810}
v) {} vi) U
vii) C={1,3,5,7,9} iii) { }

5. DU-4 i) A4 i) U iv)4 V)@
Exerclse 2.4 on page 54

Cond itional Converse Inverse Contrapositive

)~P—gq gS=pR —p=q =g P

i) g p P—*q ~g—=>~p ~p—r—g

i) ~p—~g ~g—>~p p-gq g—>p

V) ~q~p ~p~q q-p pq

2.

2| q | ~p | ~q |po~p| p—q | p>-P)V—>9)

T2 ST |SEN =R F T T

S| NES|NERET F F F

] e e i g T T T

ES\SEN | WTRIET T T T =1

ii)

p q ~P | pap | (pA~p) 4
T T F . F T
T F F F T
F T T F 1t
F F T F T




iii)
p | 9 | ~q |pP9 |9 A9
TR W= [TFT[LT F F
T RE W [ R n T
Fa TR EF ([T F F
DR T F F

: As ~(p—q) and (pAa~g) have same ftruth

values, 50 ~(p—q)<>(pA~q)

4.
i) pa~p is absurdity
ii) p—(g—p) is a Tautology.
iii) gv(~gvp) is Tautology

Exercise 2.6

1.

) {L1).@2),(33), @}
Dom of (i) = {1,2,3.4)=A"
Range of (;) ={1,234}=A

5
4 o(4,4)
3 °(3,3)
2 °22)
11 (1)
- A vx
OI 102, 3 40

1) {(1,4), (2,3). 3,2), (4,1)}
Dom of (ii) = {1,2,3,4}=A,,
Range of (ii)={1,2,3,4}=A

Yy

x(1,4)
x @23)
x 32)
x (4,1)

1SR4 S

iii) {(1,1), (1,2), (1,3), 2,1), (2,2), 3, 1)}

" - Dom of (iii)={1,2,3},
Range of (iii)={1,2,3).

on page 63

y
3
5 i
4
3t «x
2+ x x
1+ = x x
— e e ]
QT

iv) {(24), (3,3), (3,4), (4,2), (4,3), (4.4)}
dom of (iv) = {2,3,4}, Range of (iv) = (2,34}

b
i
44
31
|
11

et » X
q 1 2534y S X
2. A=’R ;

i) {(x, y) | y=x}. The graph of (i)is shown in the

figure.

(i) is a function.

Y

ii) {(x, y) | x+y=5}. The graph of (ii) is shown in

the figure.

(i) is a function.

Y

lfiii;;&j x
)

yl

iii) {(x, y) | x+y < 5}. A part of tﬁe graph of (iii)
is shown in the figure:
(iii) is not a function.
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iv. {(x y) | x+y > 5}. A part of the graph of
(iv) is shown in the figure:
(iv) is not a function

3. Fig (i) does not represent a function. Fig
(ii) and Fig. (iii) represent functions. Both
functions are one-one and onto.

Fig.(iv) represents a function which is
into.

4.1) {(2,1).(3,2),

inverse of

©)={(1,2), (2,3), 3,4), (4,5). (5.6)}.

(1) is a function and the inverse of (i) is also

a function.

ii) {(1,3),(2,5), 3,7), (4, 9) (5,11)}, inverse of
(i)={(3.1). (5.2). (7,3), (9:4), (11,5)}.

(i1) and the inverse of (ii) are functions.

iii) {xz3) | v=2x+3.x € 7R} and the
3

inverse of (i) = {(x, ) | y=%,xe

4.3). (54), (6.5)}, the

functions.

iv) {(x)) | y* =4ax, x>0} and the inverse

of (iv)= {(xy) |y = éxz,x >0} (iv) is

not a function but the inveilse of (iv) is a
function..
v) {(x })lx +) —9Ix,1153}andthe
. inverse of (v}
={(x VIV +x' =9I xIAl yI<B}

‘y) and the inverse of €v) are not functions

Exercise 2.7 on page 69
1.
Setof numbers | _ =
Property e [ e
e B e 2
Closure = = G 7
. viv]iv|v]v
Associative = i 75 E72 7
] + X v v | V| v
Identity s R i Fa] 7
r + | x| x v | V| ¥
Inverse T v % | x|V |
T IEA R A A
lCommutame S 2 [ v L 27
4.
+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
30 3 0 1 2

Here 2 +2 =0 (mod 4), 2+ 3 =1 (mod 4) etc.

5. Binary operation in Table (a) is not
commutative (. a ¥ c=b,¢c ¢ a=c).
Binary operation in Table (b) is not
commutative (' a ¢ b=c, b 3¢ a=b)

6.
P a b c d
a a b c d
b b a c d
c c e c 7
d d c c 4ok

7. 1) The operation is addition mod 4.
ii) 0 is the identity element.
iii) The operation is a associative.
iv) The inverse of 0 is 0, | and 3 are inverses
: of each other. The inverse of 2 is 2.
Exercise 2.8
1 10 i) 1
iii) Yes, Gisa group and itis abelian.

on page 78



Answers

3. . Exercise 3.2 on page 100
Operation B
i) The set of rational x @ isnota group o s ==
numbers. under *X’. 2. 1) ) ii) "2" "'2_
- : iy =203
ii) The set of rational + (@ is‘a group under —_ = 2 -1
number +. 5 5
iii) The set of positive X  This is a group A
rational numbers under “x’. e 3 . J
iv) The setof integers + Zis a group under iif) —-i 2 iv) Inverse does not exist =
" v) Th fi ; 2 2
v e set of integers. X 1S not a group - s
undes ot 3. 1) x=Lx;=-1 i) x= 2,.12 =-1 -
) iii) x=2,y=1
4. Identity is E. The inverse of E is E and the L O 100 =
inverse of 0 is 0. SRR A T) [ 2k e 1} ii) [—2 1 —1:\
6. a_'xbissolutionofaﬁsx=b 0 -23 0 2 -
b3 a”' is the solution of x 3 a=b . T 2R 58S . (1]
8. P(S)is a semi-group under 3¢ which stands for 1ii) _33 :g ‘11 v) % % %
' intersection. :
14 14 -5
9. 7. ). AAl =14 217318
P a b =k -5 7 39
2 < = 4 14257 g P
b : b ¢ Aaerlgs 260 71 =8
c b e a i = 27 29 ° =10
Lt -5 -10 5
i : =2 18=1| . =83 =203
Exercise 3.1 - on page 95 8. i) X= [ o= ] i) X _[_ T 8]
3. i) x=-1,y=2 ii) x==5,y==2

4 [-14 L g] i [% . g} 9. i) A=[‘32 —97] i) A=[—3 %}

-10 8
1 :
§. i) x=-1,y=2 8. G=—;‘b=—1 Exercise3.3 _ onpagelll
N Oib=1 1. 0. Loei)asil i) 10 iii) -9
iv) 9al> v) 9 vi) 4abc
BT ) e i _%_:)9- 4. A =045 =-5,4; =014F10
12. ) [2 -1] ' 129 52 By =1,By; =0,By ==L 1 Bl=-1
9 9J 6. i) x=-2,3 i) x=-10
S s iii) x=34 7.i) 305 ii)—228 iii) O
L | 7T RO S 3} ’ ‘- =
13. i) 13 31 ii) [2 ) 9. 1) 1AA'I=171,1A"Al=0
TR Y ii) |AA" 1=0,l A’Al1=45

11. Aissingularif A=3, Bissingularif A =4,



12. i) Non-singular

iii)

A Textbook of Algebra and Trigonometry

1) Singular

—10}
20
% %

1
Non Singular  13. [—I

Exercise 3@‘? on page 126
it & AN AR A
8 |+ 2 1= 9. 9|0 - 0
SR A BV -, _y; -¥
A A V;/ //‘/} -/%7
i) | 1 1) i) |-A K %
Kotk S KK
10. )3 i) 2 i) 4
Exercise 3.5 on page 138
1. i) x=ly=0z=l
ii) X|= 1.)’-\. I/i\r § 7 /‘i
i) =20 =—Ly=3
el R =i == (]
1) x=2 x= =§ x,=%
i 4 =lkyv=Lz=I
11 -9 -24
3. i e Ay e [ j—
R {0kt g T T
- 8 5 20
"j X=—,y=—,I=—-0
9 3 9
iii) ‘\-l - 2;.“2 = I"t.-! =—2
4. i) x=-4ry=3:z=t
i) x=2t,x, =—1.x3 =1
iii) X) =—3f. Xa =-’2f.. X3 =1
5 =
or X} =1,Xy =513 =?
S. i) A=-5 x=-4r y=31 2=t
' -3 I
or x=tLyv=—-1I,z=——1
- 4 e
ii) ir'x'-é*::.f, =2,%; ==, X, =1 :
. 10 10
or x =lﬁr.‘.n:3~=r.4\r3 =it

6. i) A=6 x =
Exercise 4.1

=2+6,x, =—21—1,x;y =t

on page 142 °

1 5
1. {—l. —‘-,:} 2, {-3,4} 3. {—%3‘}
4. {2.-1) 5.{2,-2} 6. {-2.1)
-3 a+b 2
7. {T'I} 8'{ ab m}
9. {-29, 31} 10.{-35, 31} 11. (21,27}
12. (=24, 27} 13. (42,43} 14.{5,-11)

e {—7 :3165}

3
15. {23} 3
-a |
17.{_. _} 18. ——}
305 { m
19 (w+h+e) i'\[ﬂ“ b+ —ab—be—cu

4}
b+c
20. {_l _a+b}

Exercise 4.2

L {2,442} 2. {-. 4
3. {12 2‘/'_ |+J_}

. { 3 1£4f3i 3(—14;\[3;)}
> H D T P

on page 146

 _s+15i
5. (32, 1024) 6.{—5.0.——§‘D}
A
7. {—10, 3, 279’] g =78 e)
{ -4¢3[59f'}
9. £25 -47} 10)-6.2,—
+
11. { ;,4, ]—‘;‘@} 12.{-9, -1, -5 +/-6}

13. {4, 2, ~1%[71} 14.{-3, 0}15.(2.4)



16. (3, 4)

18. {'Ii 3"‘2:1/5}
19.{|."34§E} 20, {"i‘/—' 2+J‘}

17. (2, 3)

1 =1 £+/-3 1
21. {2.2. ) } 22.{ 1, 2,—2}
23. {2, 4.3 Hoa. {1100 014 557

. ,2...3 . ERES Y P !:t :t3.}

on puge 150
S |
1. {I. —3‘} 2. {2.—5} S (S

4 (4,200 S. {2} e {-11;/6}

Exercise 4.3

7. (I,-3) 8..{4.-%} 9. {1}

10. {-1£4~2} 1. {4,B}

o {-7i}[l?}

8

Exercise 4.4 on page 155

L i) (22020} ii) (-2, 20, 2¢')
i) {3,3w 3@’} iv) (-3.-3w, -3¢’}
v) (4,40 40°)

2. i) 256w ii) O iii) 4
iv) -1 v) =32 6. xX*+2x+4=0
2,-2,2i,-2i; 3,-3,3i,-3i;
i) {(£2,+2i})
i) {=1,+i}

ii) {0,%3,+3i)
iv) {01,%i)

Exercise 4.5 on page 160
1885 27 4. 21
‘5. 'Yes 6. No 7. No 8. Yes

9. No

5, =5, 5i, =5i
. Exercise 4.8

17 X
10, k== 11. k=-3

12, (x=2)(x— 1)(x+ 3)13. (x+ 4)(x + 2)(x—6)
14. (x=2)(x+ 3)(x+ 1)(2x + 3)
1S. p=—4, g =1 16. a =4, b=16.

Exercise 4.6 _ on page 164
5 112

) R i)
L. i) = ) 3 i) o

411

- 64 .
1v) 7 mtY) e \'|.1
3. )22 =9 i) pPlrg+rqg=3py
i p=0  iv) g=1 S.a+h =0
7. i) a’y*-(b* -2ac)y+c* =0
i) v +bv+a =0
i) e =wb'=2ac)+a* = 0
iv) @V = y@Babc - b)) + =0
v) C"'\'e -v(3abc-bYY+a* = 0
vi) aey + blera)y + (@ + b + ¢ 2ac) =0
vii) a*y? -2a%(b* =2ac)y +b*(b? —4ac) =0
viii) ¢ = (b = 3abe) v+a' =0
8 2°+3v-45=0 9.9%*+8v+3=0

Exercise 4.7 on page 167

L ) Irrwtional and unequal ii) Real and unequal.

iti) lrrational and unequal iv) Real and equal.

4. i) ii) 2.—-]92 iii) {0, 3}

4
3

_on puge 169

1. {(1 ~53), (“ 3)} (3, 2), l%)}

3. {3, -1). (11,-13)} 4. {(2. 3;, (%%)}



b b
s{o. . (4525
et )
{o.0. G 3)]
7. {(4. 2).2. =2)} 8 (. -D.(=2. 3}

(228 2220

J 10.{i0, 11122, =31}

Exercise 4.9 . on page 172

10 {(3:2). 3:=2).(=3. 2). (3. =2)}

2 finfBs B 2 aave)
3 {“‘*‘“**“’(f r][ :)

s, I ek 37 l'“ 37
=3, 8 : b = —
) h*'r S T2 T

[

7. {(5.3). (=5. =3) (3i. =50). (=34 50}

8. {[3_1)[_2‘,1]} 9. {(3.7). (3.~}
PR | R

“10. {(2.1).(1. 2). (=2.=1). (1. =2)}

"ﬁi
HI

Exercise 4.10 on page 176

|
1O R0 R ORI A S 5= 5 2
64 6. 11.12and-11,-12  7.6,8and -6, -8

8. 1Ssheep Y. 10. G hours
11. Length =27 cm, Breadth = lim

12. Length = 26 cm. Breadth = 21 vm

13. 63 14. 27

15. Base = 35 m. Altitude = 12:m

- 16. Length =42 rir. Breadth - 40m

17. 20 days. 10 days 18.

A dosen

12 duy~o bidays

19. 12dm 20. Rs. 56.000: Rs.44.000

Exercise 5.1 on page 183

' l CE .1 i
A= T2+ 2 o 'ty

" A Textbook of Algebra and Trigonometry

- 18 i fld s e .S
a(x-1)  x+2 4(x+3)
el 30 5
4. + -
28(x~2) T(x+5) 4(x+2)
X 1 4 R
D R ERES ) v [ (A= 1),
A « h

(a—b)a—=clx—a) +th—-u:{h—<'llx—»‘?l

¢
5 (c=ale=mix=c)

7. 3r+4+;+-—-'—3—

I(x-1) 3@2x+Dh
1 8 1
B0l cYsav+3) tse-n
9. 1 3 3 15
S AR o4y T B(x=6)
X !.l:
l[]_ ol 7

ta=b)a=c)( 1=ax) t (h=a)(b=c) 1=hx)

&
[ (OO
(c—a)(c=h)(1=cx)

s iy R
w =D o=

11. +

(=B W=D ) +b7) U?:—l‘:ltd:—{':}{I:H':

@

+
(h™=d We—=d Wx+d7)

Exercise 5.2 on page 183

2 L) )
1. = g + =
: (x=1)y (x=-1)
5 22 27
2. T =
By 0N (e D)
3 1 L 1 3 2 .
x—1 x+ 1 (x+1)
| 1 3
4. T —
! 3 (x+2)



S. 1 - 1 1

16(x+ 1) 16(.1'—3)+4(x

_3)3
o 4
6. - +
x-1 (.\‘-1)2 (x-2)
1 1 1
7. -
aGx+1) 4(x—1)+2(t_1)3
- =1 | RN |
B(x+1) 8Bx-1) 4(.:—1)2 2(",_]]3
9 I . 1 2
T 216-2) 21GHD g0 19 3e 1)
2 5 7 1
10. - - +
(.t+1)3 (x+1)1 2+ 1) " 2(x-1)
IR . g I
“4x+3) T 12— 1) 3(;c+2)"(“2)2
162 288 32
12.2x- 2+35( 3) *t25(x+2) S(x 427
Exercise 5.3 on page 187
{ 17x-6 _ 17
seRel) &)
1 1-x
2. -+
2T+~ 50 42
3 -2 " 2x+33
I3c+3) * 132 4 4)
"t El b xX+35
x Z+2x+5
1 x=2
5. +
2Ax+2) 524
6 2 A x+1
S@el) B2 a5 )
5 3] 4x+3
1. 3G —1) + +
8x—-17 4(*+3)
3. -1 1 x+4

+ +
18G=1) * 317 1802 +2)

9, -1+

1 1

o)
10. —=

1
41-xtad+n "t

2(1 + x5
x—2

Exercise 5.4

x—1

+
20 +x+1) 208 -x+1)

on page 188
2x+3

L+x+1

1 x+1

+
(2 +x+ 1)

x+1

ax-1)

46 + 1)
-1 x+2

+
20¢ + 1)

x+14

36(x—2)

1 1

36(x° +2)
2 4

602 +2)°

l—x+l+x+

r+1

@ +1)
3

2 2x-1
+
x—1

=1 1

X+x+1

o +x+ 1)

X 2

6. + +

x+1 (I+1):

Exercise 6.1
DIE =16035S

i) 1L,1,-3,5

23
v) —-=
S

ol

L
3
2,6

vii) AL17

ix) 1,3,12,60

2, i) 4l ii)
iv) 13 V)

301 RR01527
i) 112,288

Exercise 6.2
1. 1)

iii) -3,1,5,9
2. a,=2n+l

5,8,11, 14,...

E+2) (P+2)7

on page 191

i) —1,4,-9,16
iv) -2,1,4,7

. lll |

vl) — e
2 4 816

viii) 1,2, 6,24

%) L] 1 1
a a+d a+2d a+3d

2520  iii) £}
64

-15
ii) 63, 127
iv) 13,-15

on page 194
i) -3,2,7,12,...

3. 30



A Textbook of Algebra and Trigonometry

4. 12-11x 5. 67
6. 31%termof A.P

8. 20

9. 258]11.

10. i) (=19) is the term of A.P.
ii) 2 is not the term of A.P.

o [3:!+1]’
3

Exercise 6.3

1L i) 45 i)

2. a=2 b=11 :
17 20 23 26 29 32

7. 26" term of A.P

onpage 196

x+1 i) 1+x2

4. 2V2,3V2,442,52,

SRS 13 g 15
2 2 2 2 2
6. 5,7,9are three A.Ms between 3 and 11

7. n=1

Exercise 6.4 on page 199
1. 1581
117
2. i) 192 il) — i) 24.6
V2

iv) E71,2=159.5 v) n(x+(n-2)a)

-

vi)_q{2+(3—n)~/:_c}vii)£[2+(n—3)~l§}
2

1—x 2 I-x
3. i) 13terms 11) 12 terms
4. i) nGn-2) i %[9;:-13] '
5. 650 6. 1+5+9+13+... 7. %

9. 20,0000 10. Sg =126 11.3+7+11+...
12, 2+5+8+11+... 13. 2+5+8+11+...
14. 5,8,11 or 11,8, 5

15. 5,7,9,11 or 119,75

16. 3,4,56,70r7,6,543 17. 2,5,8, 11, ...

Exercise 6.5 on page 202
1. 270 2.27 3. 160 4. 78 5. 30 weeks
6. i) 8lm i) 225m 7. Rs.99000
8. l4dn 9, Rs. 11000 10. 120 balls
Exercise 6.6 on page 205
1. 48 2. 32(1-r) 3. 64
4. 32(1-i) 5. 9774 approx 6. 11

- 2 n
9. (-1 (E] 10. 2,6, 18 or 18, 6. 2

11. 2,6,18,54 13. 2,7,120r 10,7,4

14. 1,2,3 or 17,2,-13
Exercise 6.7 on page 209
1. i) 4ior —4i i) 4 or -4
2. i) 2and4 i) 4and 8
3. i) 248,-24,-82i-4-8i,—2i,-48i
ii) 4,8,16:—4.8.—16.4.".-8.—16.‘.—43‘—8?16!'
1
4. 8,12, 24 48 6. —
2
7. 16,4 or4, 16 8. 82 or2,8
Exercise 6.8 on page 215

1.

3.

7174453 RN2 1( 1 ]
2, i) =|n—|1-—
4782969 9] al 10"
1|10 '
i) —|—\10"-1)-
1) 31: 9 ( ) u}

a(b-1)(a" -1)-(a-1)b(b" ~1)
(a-b)(a-1)(-1)

a(l-b)1-a")-(1-a)b(-b")
(a-b)(1-a)(1-b)

) [l—r" k(=K )]

or

1-k| 1-r 1-kr
= r|r —l_k(k r' =1
1-k| r-1 kr—1




‘_85_(1—n 5. i)% i) 1

iii) 341 iv) 4 v) 42+42)  vi)02

. 133 = 259
6. 1) %9 ii) 9 m)ﬁ
iv) 152 v) E vi) 1136

99 999 990
-

7. — 10. 135 m
(1=r)(1=kr)

12 ) e
273

11. 175m

13. ii)) -2<x<2 14. 3+2+%+...
Exercise 6.9 on page 218
1. Rs.968 2.Rs.16384 3. 70304
4. 750 5. A2>" or A4" bacteria 6. 3

Exercise 6.10 on page 224
. R B )
1 — i) — 1) — 1) —
D W1 D3 W3
4)
3 | 2,1_:_1 u)iiii_—‘i
2\ ER s Ay TS DR 6D
4. l)l.i.i.i ii) S350 3 RS
7°11'15°19 23°31°39°47
iy 100 100 100 100
A7 I3RS
5.0 el Ny
29 13
11
8. — 9. == Il' il Yemmd Yy (1Y
S b 3 5o

13 A=A G DN
VA3 G == alH =%s

ii) A =l—3-,G_=i6,H 272
2 13

16

14. i) A=5.G=4.H=—5—

Exercise 7.1

4 16
.s = =—,H="_
i) A=1G s %5

16

15- l) A=—5.G=-—4,H=—_§-

S Gl L0
i) A=-1,G= S.H 55
16. 6,3 or 3,6 17. 8,2 or 2,8

11 16 1 25
18- ls_'s_ T Y T g ]
3’9 & 25'3'144
Exercise 6.11 on page 229
n(n+1)(4n-1)

1. 2er2in-n" 2!
2 2

3. n(n+1)? sy -:—(Srt2+21n+16)

5. %(4;11 -1) 6. %(6}13 +3n-1)

1'12(1r1+l)2

5 8.%(3!13 +16n% +30n+23)

9. %(9::3 +58n2 +135n+134)

10. 7(9n +20n? +5n-10)11. n(n+1;(n+2)
1, Pa+h? +3n+2) 5, At
12 2
14. i) -n(2n+)) ii) —8n?
iii) ';—6(41'12 +15n +17) |
15, 1)  n(M)+2n+2 i) (2" +15n+19)

6
16. i) n(8n’ +10n+5) '
ii) n(4n>+4n% +5n+8)
on page 231
1. i) 24 ii) 720 i) 8 iv) 720

v) 330 vi) 20 vii) 840 viii) 770
ix) 36 ‘x) 1 xi)6  xii) 24
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6! 12! 20! 10!

SRR G e 121 200 BT N7 32 1., 8
2. D 3 i) gy i) T V) 5pg; & 355 %55 10753
! 2 T : 248
V) ﬂ vi) 21481 \,.")("__3)1 Exercise 7.6 on page
@+2)! - @+ 1) L 10)s T4 Waii)h. 165 dil)ies RV
e =2)) | n A n! . i
i) =1t ®3go2r  ® G- 15 15
2. i) 20 i) 15 iii)SI iv) 52
Exercise 7.2 on page 235 ) L3S 1913
1. i) 6840 i) 43680 iii) 95040 3 29 100 25
iv) 604800 v) 362880 3. i) 90 ii) 108 iii) 135
2. )6 i) 3 i) 9 4. 60 5. 1956 Exercise 7.7 on page 251

6. 1) 120 i) 720 iii) 5040 7. 60

U o D0 PR LS L 2
i o S e S T B el e
8. 90 9. i)48 ii)72  10. 600,120 l9233504135969 36 3
11. 24 12. 30240 13. 1440 14. 2880 Exercise 7.8 0%
- Exercise 7.3 on page 238 5 | 1
1. 9 3.;[ 4.1 5. 169
1. i) 15120 ii) 20160
iii) 4989600 iv) 10810800 < e T Lot il
) 6 T69: Te9 7708 336 * 3 10 39
2. 20 3. 180 4. 360 5. 90,12
6.69300 7. 725760 8.19958400 ways Exercise82 ___ onpage273
9. 967680 10. 2880 11. 3 12. 60 1. i) @ +10a*b+ 400’ +80a%h" +80ab’ +32°
: 6
- 3 515 20 60 96 64
Exercise 7.4 on page 242 1) %“§I3+T__3+_6_T+_I-2_
X X X X
- D(n— -
1) 220 i) 1140 jip) 220 =3 e
: . iii) 81a* ~36a"x+6x" —— +——
2. )9 i) 12 iii) 18 S
S e i iv) 128a’ —448a°x+672a’x - 560ax
) 2 i . , . ):4 XS xﬁ J.‘?
4. i) 10 ii) 20 iii) 54 5. 6160 +280-—-—84—3—+14—;—__’.-
6. 20 7. 1365,1001 a a a a
9. i) 11760 i) 22968 iii) 20616

Exercise 7.5 on page 245

1 2 oFas 3
L 10 23.5 33§ 43,

155 3
s—‘3,3 6-;1



8 2
v) _1_;!.._1‘_+I£__14__+70
256 ;8 846 4yt 2
2 4 6. 8
2 : 256
—204Y_yaagd 5122+ =X
x° x* x8 X
3 2 2 3
vi) L—6 415220415267+
x X X a a a
2. i) 0912673 i) 16.64966416

iii) 9920.23968016 iv) 4084101
3. i) 2a*+24a%x* +8x* i) 724
iii) 82i iv) 2x(4x>-3)
4. i) 16+32x-8x2 -40x> +x* +20x°
+2x8 —4x" +x®
i) 1-4x+10x?=16x> +19x* -16x°
+10x8 -4x" +x*

i 1-4x+2x*+8x> —5x* —8x° +2x°

+4x7 +x8
5. i) x®+3x°-5x3 +3x-1

i 3 2 3 1

i) x*-3x"+5-——-—

xz ).'3

6. i) 15120x* i) —41184x7?

4

i) 40325~ iv) 462x°)°
X

7. 1809 Ly @ot
9 (n!)?
g =200 sy i) —8064 ii}— iii)
8 4
35
10. i) Bl ii) —@; A
16 32 16x
iii) 2(-1) "'mxand
m!(m+1)!
l(_”'"ﬂ Cm+1)! l
2 m(m+1)! x
=T 1
11. (-1) % 3Bn)! ,

AT

Exercise 8.3 on page 283
1)1——;-::—%::2 —%x —... valid if | x|< 1

i) 1-2x+4x>-8x>+...  validif ]x|<%

' 4

iii) | e L R if |x|<1
3 4 O ST

iv) Z—Ex—ixz—ﬂ— - valldlﬂxici
4" 64" 512 3

ity el oy validif x4
8 32 128 512

vi) -l~+~:ix+£ 2
4 16

vii) 1-x+2x2 —-2x> +... valid if | x|<1

2—;)3 +...valid if ]x]<%

viii) '1+2x+%x1+2x3+...va1idif|x|<%
i) L+ ox ok g 423 4 valid if |x|<2
4" 327 128

X) l+lar:—2.vc2 +%x3+...valid if —-;—-: x<l

2 3
xi) 1+3x—l\2——r‘+ _valid if —l<x<1
3 9 3

2. 1)9.950 approx. (correct to three decimal places)
ii) 0.990 approx. (correct to three decimal places)
iii) 1.010 approx. (correct to three decimal places)
iv) 4.021 approx. (corect to three decimal places)
v)2.031 approx. (correct to three decimal places)
vi) 1.987 approx. (correct to three decimal places)

vii) 0.100 approx. (correct to three decimal places)

viii) 0.331 approx. (correct to three decimal places)

ix)0.935 approx. (correct to three decimal places)

x) 1.001  approx. (comrect to three decimal places)

xi) 0.356 approx. (correct to three decimal places)

xii)5.981 approx. (correct to three decimal places)

3. D (ED"%X2n i) 4n i) 4Q2n-1)
iv) 2n2+2n+1 v) (=D"(n+1)

Answers



9. 1)

ExerciSe 9.1

195) %ii)%

7 2
vi) ﬁ \-ii)Tn

33n
X)720 X370

4in

27721n
32400
2. 1) 22°30
. v) 90°
ix) 105°
xii) 73°20

Xiv)

e ———

A Textbook of Algebra and Trigonometry

ii) J— i) 242 iv) £

on page 292

iii}% iv) f—;‘ v) 5
51t

vm) 4 ix) —

9013n _ 181n
Xii) 57600 XD 75200

xv) 0 xvi}ﬁo‘

ii) 30° iii) 45° iv)60°
vi) 120° vii) 135° viii) 150°
x) 324° xi) 73° 20/
xii)146° 15°

xiii) 127° 37° 59"

xv) 106° 52

i) 0.6 rad.
5. i)18.86cm
i) 10cm

7. 1099 cm
10. 10.9966 m
12. 1390000 Km

15. 7819 Km

30”
ii)
ii)

ii)

8. 35

16.

3.

xiv) 125°

2n
3

1.6 rad.
20.5 mm
713 cm

1
9. 6 rad.
11. 6983 cm
T
13. 2 rad.

3354.53Km

17. 3860007 Km (approx.)

Exercise 9.2
1. i) +ve -
' “iv) —ve
2. i)—ve.

1v) — ve

3. i) IV

ii) =ve
V) +ve
ii) +ve
V) + ve

i) I

on page 301
iii) —ve
vi) —ve
iii) —ve
vi) —ve

iii) IV

iv) Il v) III vi) 11
4 i ii. ii iv. V.
sin@ = 12 =1, Sl —L =
s 41 Dk W10 N2
9, =3 =3
ERLSRS s By Ml i
12 -40 1 -1
tan 0= — — = — -1
= 5 guifane 3
13 -41
= — — =2 o
S 12 40 'JE JE
13 41 -2 10
sec9=" — — | [t 2
5 9 3 3 V2
5 -9
cotf= — — =) 1
2 40 ,E
5. cosf=——o, 8= =17
: 2
6. sin 8= 86=m:—l
1+m m+ 1
2n m —1
Lan 6:}1_1, 0o
3 26
7 2 9 3
Exercise 9.3 on page 308
= 4Bl 1 \3
2:001) ‘\{5 ii) -2 4. 2

5. Trigonometric functions of following angles.

) m o) moi) 5 iv)%“v) n

3
vi) 90° vii) 90° viii)% ix) 35

6. i) 30°iD) 30° i) 45° iv) 45° V)3

vili)g  ix) 45°

vi) 3 vi)g



Exercise 10.1 on page 321
\3 b o
1 - i) 1 i) —
1) ) 5

3

iv) -2 V) % vi) T
2. i) —sin 16° ii]-—cos33° iii)— sin 41°

iv) —sin 16° vj —cot 24° vi)cos 8°

vii) cos 5° viii)sin 15° x) sin 30“.

Exercise 10.2 on page 326

\3-1 . 3+l S

a3 1-4/3 - 1+43
iv) Np V) N2 i) -3

56 33 56

9, i) ~65 it) ~65 iii) 3

: 16 63 . 16
iv) 6_5‘ V) '6'5‘ vi) '63‘

The terminal arms of angles of measure
@+ f and o — B are in [1l and [ quadrants
respectivelv.

33 56 416 3

10. i) Z=,-7% e
D 65°~65 M 2255
. - 5

14. i) 13sin(a+ @), tan 9=77

ii) S5 sin(6+ ¢), tan ¢=§

iii) 2 sin(6+@), tang =—1

4
iv) '\Fﬂ sin (6+ ¢), tan =73

Answers

v) 2 sin (6+ ¢), tan =1

vi) Jﬁsin_(f? +¢),tang = —%E

Exercise 10.3 on page 332

Sel ISI20 __l9 __120
1. 1)51n2a=169.c052a——169.tanZaf-—-“g

S 24 : 7 24
11)51n2a=‘2—§,cos2a'=—g.mn2a=—":i"

3—-4cos28+cos48

14. sin* = 8
S=1
15. sin 18° =34L =cos 72°
5+1

sin 54° = 2 = cos 36°

cos 18° = 105 2N0 sin 72°

4
10 — 25/5
cos 54° = 34@ = sin 36°

Exercise 10.4 on page 336

1. i) sin4f8+sin2€ ii) sin 88-sin 28

1

iii) ) (sin 768+ sin 36) iv) cos 58— cos 96
15 : =1

V) 7 (sin2x-sin 2y) vi)5 (cos 4x + cos 60°)

vii) %(cos 34° — cos 58°) viii) % (cos 90° — cos 2x)
2. i) ‘2sind4@cos @ ii) 2cos68sin 28

iii) 2 cos 9?9 cos %’8 iv) —2sin48sin 38



v) 2 cos 30°cos 18° vi) 2 sin.xcos 30°

Exercise 11.1 on page 341

1. Z 21 3% 42% s.6n 68n
3 4

7. 10 8120 9. 7n 10. T11.2% 12, L

s 850 5

13. 21 14. 21 15. 10n

Exercise 11.2 on page 351

SIS ) 0

Exercise 12.1 on page 353

1. i) 0.8055 ii) 0.8055 iii) 0.3541
iv) 14919 v) 0.7357 vi) 0.4784
vii) 0.3175 viii)0.6127 ix) 0.1736

2. i) 35°23° ii) 21°18° iii) 58°17°
iv) 59°36° v) 87°23" vi) 31°14°

Exercise 12.2 on page 355

1. i) 44245 i) 6,6/330°

i) 5v3,30°,60° iv) 9.5,10.4,50°

v) 84,12434°  vi) 8J2.45°45°

2. [=52°40", ¢=400, b=318
3. B=27°20,, c=1733, a=1540

¢=661, «a=29°45, f=60°15"
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5. a=617, a=44°40°, B=45°20"

6. b=3184, a=59°36", f=30°24"

7. a=39°50", a=0533, b=0.639

Exercise 12.3 on page 359

1. 53°8° 2. 93m 3. 376m
4. 547 5 8m 6. 23m
7. 3057m 8. 36.6m 9. 30.8m

10. 555 11. 10.2m 12. 28°54~

13. 1555m 14. 44°27°15. 34.64m,20m

Exercise 12.4 on page 268
1. a=105°, a=v3+1, c= {3-1
2. a_=38“25 . b=11332. c= 143.78
3. [=80°, a=93, c= 101
4, [=62°43°, a=113, b= 148
5. a=59°30°, b=61.5, c=:32.5
“Exercise 12.5 on page 271
1. a=3601, [=380°, y=48°,
28 a =153, p=30°26", y=111°14"
3. c=+6, a=15,  f=105"
4. b=4, a=126°23", y=117°17"

5. ¢=5 a=120° B=21°47"

6. c=30.14, a=57°21", B=78°10"



7. b=125, a=47, B=5%,

8. b=113, [(=62°43", y=74°32"
9. c=409, a=4659', f=22°39’
10. =53, B=188°36", y=31°54’
11. 81°43’ and 41°17° 12. 67.25N
Exercise 12.6 on page 372

1. a=50°, B=50°, y=80°

2. a=20°55, f=26°30" y=132°35,
3. @=38°22, B=47°46', y=93°52'
4. a=33°40", B=101°58,
5
6
9

y=44°22'
a=60°10", f=76°32", y=43°18
=339 7. 132035

43°17, © 64°26',  72°17T

10. a=23° 52!, B=37°22, y=118° 46
Exercise 12.7 on page 276
1. i) 6000 Sq Unit ii) 426.69 Sq. Unit

i) 16.74 Sq Unit

2. i) 138.29 SqUnit ii)400.57 Sq Unit
iii) 6.01 Sq Unit

3. i) 216SqUnit i) 35705.89 Sq Unit
.iii') 616.60 Sq Unit

4. B=3930

5. ©=2224, =828’ 6. Rs.1125

Exercise 12.8 on page 385

6. i) R=8.125,r=4,r=105,r~12,r~14

) R=2125,r=7,r=24,r=12,r=56

Exercise 13.1 on page 398

- e =TT -
1. i) TET i) 8 i) ) %T

m - - vy —=IT .. —T0
v) 3 vi) TET \m)?’::-r viii) =0 m)v4-

3, i)% 2 i) _Jl? iv)—?};

1
v) % vi)=1 vii) % viii)—% -

Exercise 13.2 on page 400
20.sinx=l, cosx:ﬁ, tanX-‘-—l-
2 2 NE)

) 2
cotx=~f§, sec X= —, cscX=2
3

Exercise 14 on page 407

Note: Add"n e Z" with every part.

B AR P g L
3 6 6
L 2T Am e AT
i) —, —, iv) —, —
3 3 3
2 1)2‘7_”,5_”,!1_” ii)_,z_’r,f_‘l o
6’ 6°6° 6 3oty

Answers 425
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T Sw x Tr 2 Sz
. = 7. = —_
6 0::6 5 3

n .3 o 17n
10. {5+2m} u{w+2m:} U{lo+2ml:} {10 +2

14. £+m—”}u{£+2m}u{5—”+2nn}
6 3 6 6

15. {W}U{n+2m}u{;:: ’;‘} {1;:‘ ﬂzﬂ}

16, (o) O+ o {3+ 20n) u{“—;‘fznn}

R 2] ]
18. (2my U (n+2m) U} +m} oAZ < m)
9. () 055} e amfoff oo
{503} ) o520

m}

13w
10 +2

m)




